Add support for AD4000 series of low noise, low power, high speed,
successive approximation register (SAR) ADCs.
Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com>
---
MAINTAINERS | 1 +
drivers/iio/adc/Kconfig | 12 +
drivers/iio/adc/Makefile | 1 +
drivers/iio/adc/ad4000.c | 708 +++++++++++++++++++++++++++++++++++++++
4 files changed, 722 insertions(+)
create mode 100644 drivers/iio/adc/ad4000.c
diff --git a/MAINTAINERS b/MAINTAINERS
index 9aa6531f7cf2..f4ffedada8ea 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -1205,6 +1205,7 @@ L: linux-iio@vger.kernel.org
S: Supported
W: https://ez.analog.com/linux-software-drivers
F: Documentation/devicetree/bindings/iio/adc/adi,ad4000.yaml
+F: drivers/iio/adc/ad4000.c
ANALOG DEVICES INC AD4130 DRIVER
M: Cosmin Tanislav <cosmin.tanislav@analog.com>
diff --git a/drivers/iio/adc/Kconfig b/drivers/iio/adc/Kconfig
index b8184706c7d1..5bbe843916a3 100644
--- a/drivers/iio/adc/Kconfig
+++ b/drivers/iio/adc/Kconfig
@@ -21,6 +21,18 @@ config AD_SIGMA_DELTA
select IIO_BUFFER
select IIO_TRIGGERED_BUFFER
+config AD4000
+ tristate "Analog Devices AD4000 ADC Driver"
+ depends on SPI
+ select IIO_BUFFER
+ select IIO_TRIGGERED_BUFFER
+ help
+ Say yes here to build support for Analog Devices AD4000 high speed
+ SPI analog to digital converters (ADC).
+
+ To compile this driver as a module, choose M here: the module will be
+ called ad4000.
+
config AD4130
tristate "Analog Device AD4130 ADC Driver"
depends on SPI
diff --git a/drivers/iio/adc/Makefile b/drivers/iio/adc/Makefile
index 51298c52b223..f4361df40cca 100644
--- a/drivers/iio/adc/Makefile
+++ b/drivers/iio/adc/Makefile
@@ -6,6 +6,7 @@
# When adding new entries keep the list in alphabetical order
obj-$(CONFIG_AB8500_GPADC) += ab8500-gpadc.o
obj-$(CONFIG_AD_SIGMA_DELTA) += ad_sigma_delta.o
+obj-$(CONFIG_AD4000) += ad4000.o
obj-$(CONFIG_AD4130) += ad4130.o
obj-$(CONFIG_AD7091R) += ad7091r-base.o
obj-$(CONFIG_AD7091R5) += ad7091r5.o
diff --git a/drivers/iio/adc/ad4000.c b/drivers/iio/adc/ad4000.c
new file mode 100644
index 000000000000..6e08466d479c
--- /dev/null
+++ b/drivers/iio/adc/ad4000.c
@@ -0,0 +1,708 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * AD4000 SPI ADC driver
+ *
+ * Copyright 2024 Analog Devices Inc.
+ */
+#include <linux/bits.h>
+#include <linux/bitfield.h>
+#include <linux/byteorder/generic.h>
+#include <linux/cleanup.h>
+#include <linux/device.h>
+#include <linux/err.h>
+#include <linux/math.h>
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/gpio/consumer.h>
+#include <linux/regulator/consumer.h>
+#include <linux/spi/spi.h>
+#include <linux/units.h>
+#include <linux/util_macros.h>
+#include <linux/iio/iio.h>
+
+#include <linux/iio/buffer.h>
+#include <linux/iio/triggered_buffer.h>
+#include <linux/iio/trigger_consumer.h>
+
+#define AD4000_READ_COMMAND 0x54
+#define AD4000_WRITE_COMMAND 0x14
+
+#define AD4000_CONFIG_REG_DEFAULT 0xE1
+
+/* AD4000 Configuration Register programmable bits */
+#define AD4000_CFG_SPAN_COMP BIT(3) /* Input span compression */
+#define AD4000_CFG_HIGHZ BIT(2) /* High impedance mode */
+
+#define AD4000_SCALE_OPTIONS 2
+
+#define AD4000_TQUIET1_NS 190
+#define AD4000_TQUIET2_NS 60
+#define AD4000_TCONV_NS 320
+
+#define __AD4000_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access) \
+{ \
+ .type = IIO_VOLTAGE, \
+ .indexed = 1, \
+ .differential = 1, \
+ .channel = 0, \
+ .channel2 = 1, \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
+ BIT(IIO_CHAN_INFO_SCALE), \
+ .info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\
+ .scan_type = { \
+ .sign = _sign, \
+ .realbits = _real_bits, \
+ .storagebits = _storage_bits, \
+ .shift = _storage_bits - _real_bits, \
+ .endianness = IIO_BE, \
+ }, \
+}
+
+#define AD4000_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \
+ __AD4000_DIFF_CHANNEL((_sign), (_real_bits), \
+ ((_real_bits) > 16 ? 32 : 16), (_reg_access))
+
+#define __AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access)\
+{ \
+ .type = IIO_VOLTAGE, \
+ .indexed = 1, \
+ .channel = 0, \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
+ BIT(IIO_CHAN_INFO_SCALE) | \
+ BIT(IIO_CHAN_INFO_OFFSET), \
+ .info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\
+ .scan_type = { \
+ .sign = _sign, \
+ .realbits = _real_bits, \
+ .storagebits = _storage_bits, \
+ .shift = _storage_bits - _real_bits, \
+ .endianness = IIO_BE, \
+ }, \
+}
+
+#define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \
+ __AD4000_PSEUDO_DIFF_CHANNEL((_sign), (_real_bits), \
+ ((_real_bits) > 16 ? 32 : 16), (_reg_access))
+
+static const char * const ad4000_power_supplies[] = {
+ "vdd", "vio"
+};
+
+enum ad4000_sdi {
+ AD4000_SDI_MOSI,
+ AD4000_SDI_VIO,
+ AD4000_SDI_CS,
+ AD4000_SDI_GND,
+};
+
+/* maps adi,sdi-pin property value to enum */
+static const char * const ad4000_sdi_pin[] = {
+ [AD4000_SDI_MOSI] = "sdi",
+ [AD4000_SDI_VIO] = "high",
+ [AD4000_SDI_CS] = "cs",
+ [AD4000_SDI_GND] = "low",
+};
+
+struct ad4000_chip_info {
+ const char *dev_name;
+ struct iio_chan_spec chan_spec;
+ struct iio_chan_spec reg_access_chan_spec;
+ bool has_hardware_gain;
+};
+
+static const struct ad4000_chip_info ad4000_chip_info = {
+ .dev_name = "ad4000",
+ .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0),
+ .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1),
+};
+
+static const struct ad4000_chip_info ad4001_chip_info = {
+ .dev_name = "ad4001",
+ .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0),
+ .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1),
+};
+
+static const struct ad4000_chip_info ad4002_chip_info = {
+ .dev_name = "ad4002",
+ .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0),
+ .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1),
+};
+
+static const struct ad4000_chip_info ad4003_chip_info = {
+ .dev_name = "ad4003",
+ .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0),
+ .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1),
+};
+
+static const struct ad4000_chip_info ad4004_chip_info = {
+ .dev_name = "ad4004",
+ .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0),
+ .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1),
+};
+
+static const struct ad4000_chip_info ad4005_chip_info = {
+ .dev_name = "ad4005",
+ .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0),
+ .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1),
+};
+
+static const struct ad4000_chip_info ad4006_chip_info = {
+ .dev_name = "ad4006",
+ .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0),
+ .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1),
+};
+
+static const struct ad4000_chip_info ad4007_chip_info = {
+ .dev_name = "ad4007",
+ .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0),
+ .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1),
+};
+
+static const struct ad4000_chip_info ad4008_chip_info = {
+ .dev_name = "ad4008",
+ .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0),
+ .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1),
+};
+
+static const struct ad4000_chip_info ad4010_chip_info = {
+ .dev_name = "ad4010",
+ .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0),
+ .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1),
+};
+
+static const struct ad4000_chip_info ad4011_chip_info = {
+ .dev_name = "ad4011",
+ .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0),
+ .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1),
+};
+
+static const struct ad4000_chip_info ad4020_chip_info = {
+ .dev_name = "ad4020",
+ .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0),
+ .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1),
+};
+
+static const struct ad4000_chip_info ad4021_chip_info = {
+ .dev_name = "ad4021",
+ .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0),
+ .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1),
+};
+
+static const struct ad4000_chip_info ad4022_chip_info = {
+ .dev_name = "ad4022",
+ .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0),
+ .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1),
+};
+
+static const struct ad4000_chip_info adaq4001_chip_info = {
+ .dev_name = "adaq4001",
+ .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0),
+ .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1),
+ .has_hardware_gain = true,
+};
+
+static const struct ad4000_chip_info adaq4003_chip_info = {
+ .dev_name = "adaq4003",
+ .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0),
+ .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1),
+ .has_hardware_gain = true,
+};
+
+struct ad4000_state {
+ struct spi_device *spi;
+ struct gpio_desc *cnv_gpio;
+ struct spi_transfer xfers[2];
+ struct spi_message msg;
+ struct mutex lock; /* Protect read modify write cycle */
+ int vref_mv;
+ enum ad4000_sdi sdi_pin;
+ bool span_comp;
+ u16 gain_milli;
+ int scale_tbl[AD4000_SCALE_OPTIONS][2];
+
+ /*
+ * DMA (thus cache coherency maintenance) requires the transfer buffers
+ * to live in their own cache lines.
+ */
+ struct {
+ union {
+ __be16 sample_buf16;
+ __be32 sample_buf32;
+ } data;
+ s64 timestamp __aligned(8);
+ } scan __aligned(IIO_DMA_MINALIGN);
+ u8 tx_buf[2];
+ u8 rx_buf[2];
+};
+
+static void ad4000_fill_scale_tbl(struct ad4000_state *st,
+ struct iio_chan_spec const *chan)
+{
+ int val, tmp0, tmp1;
+ int scale_bits;
+ u64 tmp2;
+
+ /*
+ * ADCs that output two's complement code have one less bit to express
+ * voltage magnitude.
+ */
+ if (chan->scan_type.sign == 's')
+ scale_bits = chan->scan_type.realbits - 1;
+ else
+ scale_bits = chan->scan_type.realbits;
+
+ /*
+ * The gain is stored as a fraction of 1000 and, as we need to
+ * divide vref_mv by the gain, we invert the gain/1000 fraction.
+ * Also multiply by an extra MILLI to preserve precision.
+ * Thus, we have MILLI * MILLI equals MICRO as fraction numerator.
+ */
+ val = mult_frac(st->vref_mv, MICRO, st->gain_milli);
+ /* Would multiply by NANO here but we multiplied by extra MILLI */
+ tmp2 = shift_right((u64)val * MICRO, scale_bits);
+ tmp0 = div_s64_rem(tmp2, NANO, &tmp1);
+ /* Store scale for when span compression is disabled */
+ st->scale_tbl[0][0] = tmp0; /* Integer part */
+ st->scale_tbl[0][1] = abs(tmp1); /* Fractional part */
+ /* Store scale for when span compression is enabled */
+ st->scale_tbl[1][0] = tmp0;
+ /* The integer part is always zero so don't bother to divide it. */
+ if (chan->differential)
+ st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 4, 5);
+ else
+ st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 9, 10);
+}
+
+static int ad4000_write_reg(struct ad4000_state *st, uint8_t val)
+{
+ st->tx_buf[0] = AD4000_WRITE_COMMAND;
+ st->tx_buf[1] = val;
+ return spi_write(st->spi, st->tx_buf, ARRAY_SIZE(st->tx_buf));
+}
+
+static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val)
+{
+ struct spi_transfer t = {
+ .tx_buf = st->tx_buf,
+ .rx_buf = st->rx_buf,
+ .len = 2,
+ };
+ int ret;
+
+ st->tx_buf[0] = AD4000_READ_COMMAND;
+ ret = spi_sync_transfer(st->spi, &t, 1);
+ if (ret < 0)
+ return ret;
+
+ *val = st->rx_buf[1];
+ return ret;
+}
+
+static int ad4000_convert_and_acquire(struct ad4000_state *st)
+{
+ int ret;
+
+ /*
+ * In 4-wire mode, the CNV line is held high for the entire conversion
+ * and acquisition process. In other modes, the CNV GPIO is optional
+ * and, if provided, replaces controller CS. If CNV GPIO is not defined
+ * gpiod_set_value_cansleep() has no effect.
+ */
+ gpiod_set_value_cansleep(st->cnv_gpio, 1);
+ ret = spi_sync(st->spi, &st->msg);
+ gpiod_set_value_cansleep(st->cnv_gpio, 0);
+
+ return ret;
+}
+
+static int ad4000_single_conversion(struct iio_dev *indio_dev,
+ const struct iio_chan_spec *chan, int *val)
+{
+ struct ad4000_state *st = iio_priv(indio_dev);
+ u32 sample;
+ int ret;
+
+ ret = ad4000_convert_and_acquire(st);
+ if (ret < 0)
+ return ret;
+
+ if (chan->scan_type.storagebits > 16)
+ sample = be32_to_cpu(st->scan.data.sample_buf32);
+ else
+ sample = be16_to_cpu(st->scan.data.sample_buf16);
+
+ sample >>= chan->scan_type.shift;
+
+ if (chan->scan_type.sign == 's')
+ *val = sign_extend32(sample, chan->scan_type.realbits - 1);
+
+ return IIO_VAL_INT;
+}
+
+static int ad4000_read_raw(struct iio_dev *indio_dev,
+ struct iio_chan_spec const *chan, int *val,
+ int *val2, long info)
+{
+ struct ad4000_state *st = iio_priv(indio_dev);
+
+ switch (info) {
+ case IIO_CHAN_INFO_RAW:
+ iio_device_claim_direct_scoped(return -EBUSY, indio_dev)
+ return ad4000_single_conversion(indio_dev, chan, val);
+ unreachable();
+ case IIO_CHAN_INFO_SCALE:
+ *val = st->scale_tbl[st->span_comp][0];
+ *val2 = st->scale_tbl[st->span_comp][1];
+ return IIO_VAL_INT_PLUS_NANO;
+ case IIO_CHAN_INFO_OFFSET:
+ *val = 0;
+ if (st->span_comp)
+ *val = mult_frac(st->vref_mv, 1, 10);
+
+ return IIO_VAL_INT;
+ default:
+ return -EINVAL;
+ }
+}
+
+static int ad4000_read_avail(struct iio_dev *indio_dev,
+ struct iio_chan_spec const *chan,
+ const int **vals, int *type, int *length,
+ long info)
+{
+ struct ad4000_state *st = iio_priv(indio_dev);
+
+ switch (info) {
+ case IIO_CHAN_INFO_SCALE:
+ *vals = (int *)st->scale_tbl;
+ *length = AD4000_SCALE_OPTIONS * 2;
+ *type = IIO_VAL_INT_PLUS_NANO;
+ return IIO_AVAIL_LIST;
+ default:
+ return -EINVAL;
+ }
+}
+
+static int ad4000_write_raw_get_fmt(struct iio_dev *indio_dev,
+ struct iio_chan_spec const *chan, long mask)
+{
+ switch (mask) {
+ case IIO_CHAN_INFO_SCALE:
+ return IIO_VAL_INT_PLUS_NANO;
+ default:
+ return IIO_VAL_INT_PLUS_MICRO;
+ }
+}
+
+static int ad4000_write_raw(struct iio_dev *indio_dev,
+ struct iio_chan_spec const *chan, int val, int val2,
+ long mask)
+{
+ struct ad4000_state *st = iio_priv(indio_dev);
+ unsigned int reg_val;
+ bool span_comp_en;
+ int ret;
+
+ switch (mask) {
+ case IIO_CHAN_INFO_SCALE:
+ iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
+ guard(mutex)(&st->lock);
+
+ ret = ad4000_read_reg(st, ®_val);
+ if (ret < 0)
+ return ret;
+
+ span_comp_en = val2 == st->scale_tbl[1][1];
+ reg_val &= ~AD4000_CFG_SPAN_COMP;
+ reg_val |= FIELD_PREP(AD4000_CFG_SPAN_COMP, span_comp_en);
+
+ ret = ad4000_write_reg(st, reg_val);
+ if (ret < 0)
+ return ret;
+
+ st->span_comp = span_comp_en;
+ return ret;
+ }
+ unreachable();
+ default:
+ return -EINVAL;
+ }
+}
+
+static irqreturn_t ad4000_trigger_handler(int irq, void *p)
+{
+ struct iio_poll_func *pf = p;
+ struct iio_dev *indio_dev = pf->indio_dev;
+ struct ad4000_state *st = iio_priv(indio_dev);
+ int ret;
+
+ ret = ad4000_convert_and_acquire(st);
+ if (ret < 0)
+ goto err_out;
+
+ iio_push_to_buffers_with_timestamp(indio_dev, &st->scan, pf->timestamp);
+
+err_out:
+ iio_trigger_notify_done(indio_dev->trig);
+ return IRQ_HANDLED;
+}
+
+static const struct iio_info ad4000_reg_access_info = {
+ .read_raw = &ad4000_read_raw,
+ .read_avail = &ad4000_read_avail,
+ .write_raw = &ad4000_write_raw,
+ .write_raw_get_fmt = &ad4000_write_raw_get_fmt,
+};
+
+static const struct iio_info ad4000_info = {
+ .read_raw = &ad4000_read_raw,
+};
+
+/*
+ * This executes a data sample transfer for when the device connections are
+ * in "3-wire" mode, selected when the adi,sdi-pin device tree property is
+ * absent or set to "high". In this connection mode, the ADC SDI pin is
+ * connected to MOSI or to VIO and ADC CNV pin is connected either to a SPI
+ * controller CS or to a GPIO.
+ * AD4000 series of devices initiate conversions on the rising edge of CNV pin.
+ *
+ * If the CNV pin is connected to an SPI controller CS line (which is by default
+ * active low), the ADC readings would have a latency (delay) of one read.
+ * Moreover, since we also do ADC sampling for filling the buffer on triggered
+ * buffer mode, the timestamps of buffer readings would be disarranged.
+ * To prevent the read latency and reduce the time discrepancy between the
+ * sample read request and the time of actual sampling by the ADC, do a
+ * preparatory transfer to pulse the CS/CNV line.
+ */
+static int ad4000_prepare_3wire_mode_message(struct ad4000_state *st,
+ const struct iio_chan_spec *chan)
+{
+ unsigned int cnv_pulse_time = AD4000_TCONV_NS;
+ struct spi_transfer *xfers = st->xfers;
+
+ xfers[0].cs_change = 1;
+ xfers[0].cs_change_delay.value = cnv_pulse_time;
+ xfers[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
+
+ xfers[1].rx_buf = &st->scan.data;
+ xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits);
+ xfers[1].delay.value = AD4000_TQUIET2_NS;
+ xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS;
+
+ spi_message_init_with_transfers(&st->msg, st->xfers, 2);
+
+ return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg);
+}
+
+/*
+ * This executes a data sample transfer for when the device connections are
+ * in "4-wire" mode, selected when the adi,sdi-pin device tree property is
+ * set to "cs". In this connection mode, the controller CS pin is connected to
+ * ADC SDI pin and a GPIO is connected to ADC CNV pin.
+ * The GPIO connected to ADC CNV pin is set outside of the SPI transfer.
+ */
+static int ad4000_prepare_4wire_mode_message(struct ad4000_state *st,
+ const struct iio_chan_spec *chan)
+{
+ unsigned int cnv_to_sdi_time = AD4000_TCONV_NS;
+ struct spi_transfer *xfers = st->xfers;
+
+ /*
+ * Dummy transfer to cause enough delay between CNV going high and SDI
+ * going low.
+ */
+ xfers[0].cs_off = 1;
+ xfers[0].delay.value = cnv_to_sdi_time;
+ xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
+
+ xfers[1].rx_buf = &st->scan.data;
+ xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits);
+
+ spi_message_init_with_transfers(&st->msg, st->xfers, 2);
+
+ return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg);
+}
+
+static int ad4000_config(struct ad4000_state *st)
+{
+ unsigned int reg_val = AD4000_CONFIG_REG_DEFAULT;
+
+ if (device_property_present(&st->spi->dev, "adi,high-z-input"))
+ reg_val |= FIELD_PREP(AD4000_CFG_HIGHZ, 1);
+
+ return ad4000_write_reg(st, reg_val);
+}
+
+static int ad4000_probe(struct spi_device *spi)
+{
+ const struct ad4000_chip_info *chip;
+ struct device *dev = &spi->dev;
+ struct iio_dev *indio_dev;
+ struct ad4000_state *st;
+ int ret;
+
+ indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
+ if (!indio_dev)
+ return -ENOMEM;
+
+ chip = spi_get_device_match_data(spi);
+ if (!chip)
+ return -EINVAL;
+
+ st = iio_priv(indio_dev);
+ st->spi = spi;
+
+ ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(ad4000_power_supplies),
+ ad4000_power_supplies);
+ if (ret)
+ return dev_err_probe(dev, ret, "Failed to enable power supplies\n");
+
+ ret = devm_regulator_get_enable_read_voltage(dev, "ref");
+ if (ret < 0)
+ return dev_err_probe(dev, ret,
+ "Failed to get ref regulator reference\n");
+ st->vref_mv = ret / 1000;
+
+ st->cnv_gpio = devm_gpiod_get_optional(dev, "cnv", GPIOD_OUT_HIGH);
+ if (IS_ERR(st->cnv_gpio))
+ return dev_err_probe(dev, PTR_ERR(st->cnv_gpio),
+ "Failed to get CNV GPIO");
+
+ ret = device_property_match_property_string(dev, "adi,sdi-pin",
+ ad4000_sdi_pin,
+ ARRAY_SIZE(ad4000_sdi_pin));
+ if (ret < 0 && ret != -EINVAL)
+ return dev_err_probe(dev, ret,
+ "getting adi,sdi-pin property failed\n");
+
+ /* Default to usual SPI connections if pin properties are not present */
+ st->sdi_pin = ret == -EINVAL ? AD4000_SDI_MOSI : ret;
+ switch (st->sdi_pin) {
+ case AD4000_SDI_MOSI:
+ indio_dev->info = &ad4000_reg_access_info;
+ indio_dev->channels = &chip->reg_access_chan_spec;
+
+ /*
+ * In "3-wire mode", the ADC SDI line must be kept high when
+ * data is not being clocked out of the controller.
+ * Request the SPI controller to make MOSI idle high.
+ */
+ spi->mode |= SPI_MOSI_IDLE_HIGH;
+ ret = spi_setup(spi);
+ if (ret < 0)
+ return ret;
+
+ ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels);
+ if (ret)
+ return ret;
+
+ ret = ad4000_config(st);
+ if (ret < 0)
+ return dev_err_probe(dev, ret, "Failed to config device\n");
+
+ break;
+ case AD4000_SDI_VIO:
+ indio_dev->info = &ad4000_info;
+ indio_dev->channels = &chip->chan_spec;
+ ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels);
+ if (ret)
+ return ret;
+
+ break;
+ case AD4000_SDI_CS:
+ indio_dev->info = &ad4000_info;
+ indio_dev->channels = &chip->chan_spec;
+ ret = ad4000_prepare_4wire_mode_message(st, indio_dev->channels);
+ if (ret)
+ return ret;
+
+ break;
+ case AD4000_SDI_GND:
+ return dev_err_probe(dev, -EPROTONOSUPPORT,
+ "Unsupported connection mode\n");
+
+ default:
+ return dev_err_probe(dev, -EINVAL, "Unrecognized connection mode\n");
+ }
+
+ indio_dev->name = chip->dev_name;
+ indio_dev->num_channels = 1;
+
+ devm_mutex_init(dev, &st->lock);
+
+ st->gain_milli = 1000;
+ if (chip->has_hardware_gain &&
+ device_property_present(dev, "adi,gain-milli")) {
+ ret = device_property_read_u16(dev, "adi,gain-milli",
+ &st->gain_milli);
+ if (ret)
+ return dev_err_probe(dev, ret,
+ "Failed to read gain property\n");
+ }
+
+ ad4000_fill_scale_tbl(st, indio_dev->channels);
+
+ ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
+ &iio_pollfunc_store_time,
+ &ad4000_trigger_handler, NULL);
+ if (ret)
+ return ret;
+
+ return devm_iio_device_register(dev, indio_dev);
+}
+
+static const struct spi_device_id ad4000_id[] = {
+ { "ad4000", (kernel_ulong_t)&ad4000_chip_info },
+ { "ad4001", (kernel_ulong_t)&ad4001_chip_info },
+ { "ad4002", (kernel_ulong_t)&ad4002_chip_info },
+ { "ad4003", (kernel_ulong_t)&ad4003_chip_info },
+ { "ad4004", (kernel_ulong_t)&ad4004_chip_info },
+ { "ad4005", (kernel_ulong_t)&ad4005_chip_info },
+ { "ad4006", (kernel_ulong_t)&ad4006_chip_info },
+ { "ad4007", (kernel_ulong_t)&ad4007_chip_info },
+ { "ad4008", (kernel_ulong_t)&ad4008_chip_info },
+ { "ad4010", (kernel_ulong_t)&ad4010_chip_info },
+ { "ad4011", (kernel_ulong_t)&ad4011_chip_info },
+ { "ad4020", (kernel_ulong_t)&ad4020_chip_info },
+ { "ad4021", (kernel_ulong_t)&ad4021_chip_info },
+ { "ad4022", (kernel_ulong_t)&ad4022_chip_info },
+ { "adaq4001", (kernel_ulong_t)&adaq4001_chip_info },
+ { "adaq4003", (kernel_ulong_t)&adaq4003_chip_info },
+ { }
+};
+MODULE_DEVICE_TABLE(spi, ad4000_id);
+
+static const struct of_device_id ad4000_of_match[] = {
+ { .compatible = "adi,ad4000", .data = &ad4000_chip_info },
+ { .compatible = "adi,ad4001", .data = &ad4001_chip_info },
+ { .compatible = "adi,ad4002", .data = &ad4002_chip_info },
+ { .compatible = "adi,ad4003", .data = &ad4003_chip_info },
+ { .compatible = "adi,ad4004", .data = &ad4004_chip_info },
+ { .compatible = "adi,ad4005", .data = &ad4005_chip_info },
+ { .compatible = "adi,ad4006", .data = &ad4006_chip_info },
+ { .compatible = "adi,ad4007", .data = &ad4007_chip_info },
+ { .compatible = "adi,ad4008", .data = &ad4008_chip_info },
+ { .compatible = "adi,ad4010", .data = &ad4010_chip_info },
+ { .compatible = "adi,ad4011", .data = &ad4011_chip_info },
+ { .compatible = "adi,ad4020", .data = &ad4020_chip_info },
+ { .compatible = "adi,ad4021", .data = &ad4021_chip_info },
+ { .compatible = "adi,ad4022", .data = &ad4022_chip_info },
+ { .compatible = "adi,adaq4001", .data = &adaq4001_chip_info },
+ { .compatible = "adi,adaq4003", .data = &adaq4003_chip_info },
+ { }
+};
+MODULE_DEVICE_TABLE(of, ad4000_of_match);
+
+static struct spi_driver ad4000_driver = {
+ .driver = {
+ .name = "ad4000",
+ .of_match_table = ad4000_of_match,
+ },
+ .probe = ad4000_probe,
+ .id_table = ad4000_id,
+};
+module_spi_driver(ad4000_driver);
+
+MODULE_AUTHOR("Marcelo Schmitt <marcelo.schmitt@analog.com>");
+MODULE_DESCRIPTION("Analog Devices AD4000 ADC driver");
+MODULE_LICENSE("GPL");
--
2.43.0
On Sat, 2024-06-29 at 16:06 -0300, Marcelo Schmitt wrote:
> Add support for AD4000 series of low noise, low power, high speed,
> successive approximation register (SAR) ADCs.
>
> Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com>
> ---
Hi Marcelo,
LGTM. Only one thing that needs to be addressed. With that,
Reviewed-by: Nuno Sa <nuno.sa@analog.com>
> MAINTAINERS | 1 +
> drivers/iio/adc/Kconfig | 12 +
> drivers/iio/adc/Makefile | 1 +
> drivers/iio/adc/ad4000.c | 708 +++++++++++++++++++++++++++++++++++++++
> 4 files changed, 722 insertions(+)
> create mode 100644 drivers/iio/adc/ad4000.c
>
...
>
> + st->gain_milli = 1000;
> + if (chip->has_hardware_gain &&
> + device_property_present(dev, "adi,gain-milli")) {
> + ret = device_property_read_u16(dev, "adi,gain-milli",
> + &st->gain_milli);
> + if (ret)
> + return dev_err_probe(dev, ret,
> + "Failed to read gain
> property\n");
> + }
The above is odd. Why not reading directly device_property_read_u16()? Skip the
call to device_property_present().
But most importantly, you're not doing any validation on gain_milli which is an
enum (by looking at the bindings). So in theory even 0 would be accepted which
would lead to a divide by 0 later on. I would do:
if (chip->has_hardware_gain) {
ret = device_property_read_u16(...)
if (!ret) {
/* validate here for a proper value /*
}
}
You can also check for ret < 0 and -EINVAL to detect an invalid devicetree
parameter instead of completely ignoring return codes (but for non mandatory
properties one typically does not care much - up to you)
- Nuno Sá
On 6/29/24 2:06 PM, Marcelo Schmitt wrote: > Add support for AD4000 series of low noise, low power, high speed, > successive approximation register (SAR) ADCs. > > Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com> > --- Reviewed-by: David Lechner <dlechner@baylibre.com>
On Sat, 29 Jun 2024 16:06:59 -0300
Marcelo Schmitt <marcelo.schmitt@analog.com> wrote:
> Add support for AD4000 series of low noise, low power, high speed,
> successive approximation register (SAR) ADCs.
>
> Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com>
Hi Marcelo
A few comments inline. However, the spi_w8r8 etc can easily be a follow up
optimization patch (if you agree it's a good improvement) and the
other changes are so trivial I could tweak whilst applying.
So unless you have to do a v7 for some other reason this is fine for
merging as is - subject to the fact it's not been on list long enough yet
and I need Mark to pick up the SPI parts and throw me a tag to pull.
Thanks,
Jonathan
> --- /dev/null
> +++ b/drivers/iio/adc/ad4000.c
> @@ -0,0 +1,708 @@
> +
> +struct ad4000_state {
> + struct spi_device *spi;
> + struct gpio_desc *cnv_gpio;
> + struct spi_transfer xfers[2];
> + struct spi_message msg;
> + struct mutex lock; /* Protect read modify write cycle */
> + int vref_mv;
> + enum ad4000_sdi sdi_pin;
> + bool span_comp;
> + u16 gain_milli;
> + int scale_tbl[AD4000_SCALE_OPTIONS][2];
> +
> + /*
> + * DMA (thus cache coherency maintenance) requires the transfer buffers
> + * to live in their own cache lines.
> + */
> + struct {
> + union {
> + __be16 sample_buf16;
> + __be32 sample_buf32;
> + } data;
> + s64 timestamp __aligned(8);
> + } scan __aligned(IIO_DMA_MINALIGN);
> + u8 tx_buf[2];
> + u8 rx_buf[2];
If you made the spi_w8r8() change suggested below (which uses a bounce buffer
in the spi core), rx_buf would be unused and can go away.
Given I think registers accesses on this device are all off the fast path
you could even use spi_write_then_read() with zero read size for the
register writes and rely on the spi core bounce buffers.
That way tx_buf goes away as well leaving you with the dma
safe buffer for only the fast path reads.
> +};
> +
> +static void ad4000_fill_scale_tbl(struct ad4000_state *st,
> + struct iio_chan_spec const *chan)
> +{
> + int val, tmp0, tmp1;
> + int scale_bits;
> + u64 tmp2;
> +
> + /*
> + * ADCs that output two's complement code have one less bit to express
> + * voltage magnitude.
> + */
> + if (chan->scan_type.sign == 's')
> + scale_bits = chan->scan_type.realbits - 1;
> + else
> + scale_bits = chan->scan_type.realbits;
> +
> + /*
> + * The gain is stored as a fraction of 1000 and, as we need to
> + * divide vref_mv by the gain, we invert the gain/1000 fraction.
> + * Also multiply by an extra MILLI to preserve precision.
> + * Thus, we have MILLI * MILLI equals MICRO as fraction numerator.
> + */
> + val = mult_frac(st->vref_mv, MICRO, st->gain_milli);
If you are rolling a v7 for other reasons, stick some line breaks in here!
It's a bit of a mass of text that is hard for my eyes to parse!
> + /* Would multiply by NANO here but we multiplied by extra MILLI */
> + tmp2 = shift_right((u64)val * MICRO, scale_bits);
> + tmp0 = div_s64_rem(tmp2, NANO, &tmp1);
> + /* Store scale for when span compression is disabled */
> + st->scale_tbl[0][0] = tmp0; /* Integer part */
> + st->scale_tbl[0][1] = abs(tmp1); /* Fractional part */
> + /* Store scale for when span compression is enabled */
> + st->scale_tbl[1][0] = tmp0;
> + /* The integer part is always zero so don't bother to divide it. */
> + if (chan->differential)
> + st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 4, 5);
> + else
> + st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 9, 10);
> +}
> +static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val)
> +{
> + struct spi_transfer t = {
> + .tx_buf = st->tx_buf,
> + .rx_buf = st->rx_buf,
> + .len = 2,
> + };
> + int ret;
> +
> + st->tx_buf[0] = AD4000_READ_COMMAND;
> + ret = spi_sync_transfer(st->spi, &t, 1);
> + if (ret < 0)
> + return ret;
> +
> + *val = st->rx_buf[1];
> + return ret;
I'd be tempted to do
ssize_t ret;
ret = spi_w8r8(AD4000_READ_COMMAND);
if (ret < 0)
return ret;
*val = ret;
return 0;
> +}
> +static int ad4000_write_raw(struct iio_dev *indio_dev,
> + struct iio_chan_spec const *chan, int val, int val2,
> + long mask)
> +{
> + struct ad4000_state *st = iio_priv(indio_dev);
> + unsigned int reg_val;
> + bool span_comp_en;
> + int ret;
> +
> + switch (mask) {
> + case IIO_CHAN_INFO_SCALE:
> + iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
> + guard(mutex)(&st->lock);
> +
> + ret = ad4000_read_reg(st, ®_val);
> + if (ret < 0)
> + return ret;
> +
> + span_comp_en = val2 == st->scale_tbl[1][1];
> + reg_val &= ~AD4000_CFG_SPAN_COMP;
> + reg_val |= FIELD_PREP(AD4000_CFG_SPAN_COMP, span_comp_en);
> +
> + ret = ad4000_write_reg(st, reg_val);
> + if (ret < 0)
> + return ret;
> +
> + st->span_comp = span_comp_en;
> + return ret;
If you are spinning for another reason, make it clear this is always good.
The spi_write() never returns positive so current code is correct but I had
to go check which this would have avoided.
return 0;
If nothing else comes up, I'll probably tweak whilst applying.
J
> + }
> + unreachable();
> + default:
> + return -EINVAL;
> + }
> +}
On 06/30, Jonathan Cameron wrote:
> On Sat, 29 Jun 2024 16:06:59 -0300
> Marcelo Schmitt <marcelo.schmitt@analog.com> wrote:
>
> > Add support for AD4000 series of low noise, low power, high speed,
> > successive approximation register (SAR) ADCs.
> >
> > Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com>
>
> Hi Marcelo
>
> A few comments inline. However, the spi_w8r8 etc can easily be a follow up
> optimization patch (if you agree it's a good improvement) and the
> other changes are so trivial I could tweak whilst applying.
>
...
> > + /*
> > + * The gain is stored as a fraction of 1000 and, as we need to
> > + * divide vref_mv by the gain, we invert the gain/1000 fraction.
> > + * Also multiply by an extra MILLI to preserve precision.
> > + * Thus, we have MILLI * MILLI equals MICRO as fraction numerator.
> > + */
> > + val = mult_frac(st->vref_mv, MICRO, st->gain_milli);
>
> If you are rolling a v7 for other reasons, stick some line breaks in here!
> It's a bit of a mass of text that is hard for my eyes to parse!
>
Ack
...
>
> > +static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val)
> > +{
> > + struct spi_transfer t = {
> > + .tx_buf = st->tx_buf,
> > + .rx_buf = st->rx_buf,
> > + .len = 2,
> > + };
> > + int ret;
> > +
> > + st->tx_buf[0] = AD4000_READ_COMMAND;
> > + ret = spi_sync_transfer(st->spi, &t, 1);
> > + if (ret < 0)
> > + return ret;
> > +
> > + *val = st->rx_buf[1];
> > + return ret;
>
> I'd be tempted to do
>
> ssize_t ret;
>
> ret = spi_w8r8(AD4000_READ_COMMAND);
> if (ret < 0)
> return ret;
> *val = ret;
>
> return 0;
>
I tried this when working on v6. Only difference was I had declared ret as int.
Then reg values were not read correctly with spi_w8r8().
I'm either missing something or reg access must be 16-bit transfer.
Datasheet sais:
"The AD4000/AD4004/AD4008 configuration register is read from and written to
with a 16-bit SPI instruction."
Yet, besides possible delay between first and last 8 SCLK pulses, I don't see
any transfer level differences between current and spi_w8r8() versions.
>
>
...
> > + ret = ad4000_write_reg(st, reg_val);
> > + if (ret < 0)
> > + return ret;
> > +
> > + st->span_comp = span_comp_en;
> > + return ret;
>
> If you are spinning for another reason, make it clear this is always good.
> The spi_write() never returns positive so current code is correct but I had
> to go check which this would have avoided.
>
> return 0;
Ack
>
> If nothing else comes up, I'll probably tweak whilst applying.
>
> J
>
> > + }
> > + unreachable();
> > + default:
> > + return -EINVAL;
> > + }
> > +}
>
On Mon, 1 Jul 2024 15:10:54 -0300
Marcelo Schmitt <marcelo.schmitt1@gmail.com> wrote:
> On 06/30, Jonathan Cameron wrote:
> > On Sat, 29 Jun 2024 16:06:59 -0300
> > Marcelo Schmitt <marcelo.schmitt@analog.com> wrote:
> >
> > > Add support for AD4000 series of low noise, low power, high speed,
> > > successive approximation register (SAR) ADCs.
> > >
> > > Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com>
> >
> > Hi Marcelo
> >
> > A few comments inline. However, the spi_w8r8 etc can easily be a follow up
> > optimization patch (if you agree it's a good improvement) and the
> > other changes are so trivial I could tweak whilst applying.
> >
> ...
> > > + /*
> > > + * The gain is stored as a fraction of 1000 and, as we need to
> > > + * divide vref_mv by the gain, we invert the gain/1000 fraction.
> > > + * Also multiply by an extra MILLI to preserve precision.
> > > + * Thus, we have MILLI * MILLI equals MICRO as fraction numerator.
> > > + */
> > > + val = mult_frac(st->vref_mv, MICRO, st->gain_milli);
> >
> > If you are rolling a v7 for other reasons, stick some line breaks in here!
> > It's a bit of a mass of text that is hard for my eyes to parse!
> >
> Ack
>
> ...
>
> >
> > > +static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val)
> > > +{
> > > + struct spi_transfer t = {
> > > + .tx_buf = st->tx_buf,
> > > + .rx_buf = st->rx_buf,
> > > + .len = 2,
> > > + };
> > > + int ret;
> > > +
> > > + st->tx_buf[0] = AD4000_READ_COMMAND;
> > > + ret = spi_sync_transfer(st->spi, &t, 1);
> > > + if (ret < 0)
> > > + return ret;
> > > +
> > > + *val = st->rx_buf[1];
> > > + return ret;
> >
> > I'd be tempted to do
> >
> > ssize_t ret;
> >
> > ret = spi_w8r8(AD4000_READ_COMMAND);
> > if (ret < 0)
> > return ret;
> > *val = ret;
> >
> > return 0;
> >
> I tried this when working on v6. Only difference was I had declared ret as int.
> Then reg values were not read correctly with spi_w8r8().
> I'm either missing something or reg access must be 16-bit transfer.
> Datasheet sais:
> "The AD4000/AD4004/AD4008 configuration register is read from and written to
> with a 16-bit SPI instruction."
> Yet, besides possible delay between first and last 8 SCLK pulses, I don't see
> any transfer level differences between current and spi_w8r8() versions.
Ah. If you go around again, throw in a comment so we don't 'fix' it in
the future!
>
> >
> >
> ...
> > > + ret = ad4000_write_reg(st, reg_val);
> > > + if (ret < 0)
> > > + return ret;
> > > +
> > > + st->span_comp = span_comp_en;
> > > + return ret;
> >
> > If you are spinning for another reason, make it clear this is always good.
> > The spi_write() never returns positive so current code is correct but I had
> > to go check which this would have avoided.
> >
> > return 0;
>
> Ack
> >
> > If nothing else comes up, I'll probably tweak whilst applying.
> >
> > J
> >
> > > + }
> > > + unreachable();
> > > + default:
> > > + return -EINVAL;
> > > + }
> > > +}
> >
On Mon, Jul 01, 2024 at 03:10:54PM -0300, Marcelo Schmitt wrote:
> On 06/30, Jonathan Cameron wrote:
> > Marcelo Schmitt <marcelo.schmitt@analog.com> wrote:
> > > + struct spi_transfer t = {
> > > + .tx_buf = st->tx_buf,
> > > + .rx_buf = st->rx_buf,
> > > + .len = 2,
> > > + };
> > I'd be tempted to do
> > ssize_t ret;
> >
> > ret = spi_w8r8(AD4000_READ_COMMAND);
> I tried this when working on v6. Only difference was I had declared ret as int.
> Then reg values were not read correctly with spi_w8r8().
> I'm either missing something or reg access must be 16-bit transfer.
> Datasheet sais:
> "The AD4000/AD4004/AD4008 configuration register is read from and written to
> with a 16-bit SPI instruction."
> Yet, besides possible delay between first and last 8 SCLK pulses, I don't see
> any transfer level differences between current and spi_w8r8() versions.
It is possible the chip gets upset with the state of the idle line
during the RX only or TX only portion of the transfer.
>
> >
> >
> ...
> > > + ret = ad4000_write_reg(st, reg_val);
> > > + if (ret < 0)
> > > + return ret;
> > > +
> > > + st->span_comp = span_comp_en;
> > > + return ret;
> >
> > If you are spinning for another reason, make it clear this is always good.
> > The spi_write() never returns positive so current code is correct but I had
> > to go check which this would have avoided.
> >
> > return 0;
>
> Ack
> >
> > If nothing else comes up, I'll probably tweak whilst applying.
> >
> > J
> >
> > > + }
> > > + unreachable();
> > > + default:
> > > + return -EINVAL;
> > > + }
> > > +}
> >
© 2016 - 2025 Red Hat, Inc.