[PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex

Waiman Long posted 2 patches 1 week, 4 days ago
There is a newer version of this series
[PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex
Posted by Waiman Long 1 week, 4 days ago
The current cpuset partition code is able to dynamically update
the sched domains of a running system and the corresponding
HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
"isolcpus=domain,..." boot command line feature at run time.

The housekeeping cpumask update requires flushing a number of different
workqueues which may not be safe with cpus_read_lock() held as the
workqueue flushing code may acquire cpus_read_lock() or acquiring locks
which have locking dependency with cpus_read_lock() down the chain. Below
is an example of such circular locking problem.

  ======================================================
  WARNING: possible circular locking dependency detected
  6.18.0-test+ #2 Tainted: G S
  ------------------------------------------------------
  test_cpuset_prs/10971 is trying to acquire lock:
  ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at: touch_wq_lockdep_map+0x7a/0x180

  but task is already holding lock:
  ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:
  -> #4 (cpuset_mutex){+.+.}-{4:4}:
  -> #3 (cpu_hotplug_lock){++++}-{0:0}:
  -> #2 (rtnl_mutex){+.+.}-{4:4}:
  -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
  -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:

  Chain exists of:
    (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex

  5 locks held by test_cpuset_prs/10971:
   #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
   #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at: kernfs_fop_write_iter+0x260/0x5f0
   #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x2b6/0x5f0
   #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at: cpuset_partition_write+0x77/0x130
   #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130

  Call Trace:
   <TASK>
     :
   touch_wq_lockdep_map+0x93/0x180
   __flush_workqueue+0x111/0x10b0
   housekeeping_update+0x12d/0x2d0
   update_parent_effective_cpumask+0x595/0x2440
   update_prstate+0x89d/0xce0
   cpuset_partition_write+0xc5/0x130
   cgroup_file_write+0x1a5/0x680
   kernfs_fop_write_iter+0x3df/0x5f0
   vfs_write+0x525/0xfd0
   ksys_write+0xf9/0x1d0
   do_syscall_64+0x95/0x520
   entry_SYSCALL_64_after_hwframe+0x76/0x7e

To avoid such a circular locking dependency problem, we have to
call housekeeping_update() without holding the cpus_read_lock()
and cpuset_mutex. One way to do that is to introduce a new top level
isolcpus_update_mutex which will be acquired first if the set of isolated
CPUs may have to be updated. This new isolcpus_update_mutex will provide
the need mutual exclusion without the need to hold cpus_read_lock().

As cpus_read_lock() is now no longer held when
tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
directly.

The lockdep_is_cpuset_held() is also updated to check the new
isolcpus_update_mutex.

Signed-off-by: Waiman Long <longman@redhat.com>
---
 kernel/cgroup/cpuset.c        | 79 ++++++++++++++++++++++++-----------
 kernel/sched/isolation.c      |  4 +-
 kernel/time/timer_migration.c |  3 +-
 3 files changed, 57 insertions(+), 29 deletions(-)

diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
index 98c7cb732206..96390ceb5122 100644
--- a/kernel/cgroup/cpuset.c
+++ b/kernel/cgroup/cpuset.c
@@ -78,7 +78,7 @@ static cpumask_var_t	subpartitions_cpus;
 static cpumask_var_t	isolated_cpus;
 
 /*
- * isolated_cpus updating flag (protected by cpuset_mutex)
+ * isolated_cpus updating flag (protected by isolcpus_update_mutex)
  * Set if isolated_cpus is going to be updated in the current
  * cpuset_mutex crtical section.
  */
@@ -223,29 +223,46 @@ struct cpuset top_cpuset = {
 };
 
 /*
- * There are two global locks guarding cpuset structures - cpuset_mutex and
- * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
- * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
- * structures. Note that cpuset_mutex needs to be a mutex as it is used in
- * paths that rely on priority inheritance (e.g. scheduler - on RT) for
- * correctness.
+ * CPUSET Locking Convention
+ * -------------------------
  *
- * A task must hold both locks to modify cpusets.  If a task holds
- * cpuset_mutex, it blocks others, ensuring that it is the only task able to
- * also acquire callback_lock and be able to modify cpusets.  It can perform
- * various checks on the cpuset structure first, knowing nothing will change.
- * It can also allocate memory while just holding cpuset_mutex.  While it is
- * performing these checks, various callback routines can briefly acquire
- * callback_lock to query cpusets.  Once it is ready to make the changes, it
- * takes callback_lock, blocking everyone else.
+ * Below are the three global locks guarding cpuset structures in lock
+ * acquisition order:
+ *  - isolcpus_update_mutex (optional)
+ *  - cpu_hotplug_lock (cpus_read_lock/cpus_write_lock)
+ *  - cpuset_mutex
+ *  - callback_lock (raw spinlock)
  *
- * Calls to the kernel memory allocator can not be made while holding
- * callback_lock, as that would risk double tripping on callback_lock
- * from one of the callbacks into the cpuset code from within
- * __alloc_pages().
+ * The first isolcpus_update_mutex should only be held if the existing set of
+ * isolated CPUs (in isolated partition) or any of the partition states may be
+ * changed when some cpuset control files are being written into. Otherwise,
+ * it can be skipped. Holding isolcpus_update_mutex/cpus_read_lock or
+ * cpus_write_lock will ensure mutual exclusion of isolated_cpus update.
  *
- * If a task is only holding callback_lock, then it has read-only
- * access to cpusets.
+ * As cpuset will now indirectly flush a number of different workqueues in
+ * housekeeping_update() when the set of isolated CPUs is going to be changed,
+ * it may not be safe from the circular locking perspective to hold the
+ * cpus_read_lock. So cpuset_full_lock() will be released before calling
+ * housekeeping_update() and re-acquired afterward.
+ *
+ * A task must hold all the remaining three locks to modify externally visible
+ * or used fields of cpusets, though some of the internally used cpuset fields
+ * can be modified by holding cpu_hotplug_lock and cpuset_mutex only. If only
+ * reliable read access of the externally used fields are needed, a task can
+ * hold either cpuset_mutex or callback_lock.
+ *
+ * If a task holds cpu_hotplug_lock and cpuset_mutex, it blocks others,
+ * ensuring that it is the only task able to also acquire callback_lock and
+ * be able to modify cpusets.  It can perform various checks on the cpuset
+ * structure first, knowing nothing will change. It can also allocate memory
+ * without holding callback_lock. While it is performing these checks, various
+ * callback routines can briefly acquire callback_lock to query cpusets.  Once
+ * it is ready to make the changes, it takes callback_lock, blocking everyone
+ * else.
+ *
+ * Calls to the kernel memory allocator cannot be made while holding
+ * callback_lock which is a spinlock, as the memory allocator may sleep or
+ * call back into cpuset code and acquire callback_lock.
  *
  * Now, the task_struct fields mems_allowed and mempolicy may be changed
  * by other task, we use alloc_lock in the task_struct fields to protect
@@ -256,6 +273,7 @@ struct cpuset top_cpuset = {
  * cpumasks and nodemasks.
  */
 
+static DEFINE_MUTEX(isolcpus_update_mutex);
 static DEFINE_MUTEX(cpuset_mutex);
 
 /**
@@ -302,7 +320,7 @@ void cpuset_full_unlock(void)
 #ifdef CONFIG_LOCKDEP
 bool lockdep_is_cpuset_held(void)
 {
-	return lockdep_is_held(&cpuset_mutex);
+	return lockdep_is_held(&isolcpus_update_mutex);
 }
 #endif
 
@@ -1294,9 +1312,8 @@ static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
 static void __update_isolation_cpumasks(bool twork);
 static void isolation_task_work_fn(struct callback_head *cb)
 {
-	cpuset_full_lock();
+	guard(mutex)(&isolcpus_update_mutex);
 	__update_isolation_cpumasks(true);
-	cpuset_full_lock();
 }
 
 /*
@@ -1338,8 +1355,18 @@ static void __update_isolation_cpumasks(bool twork)
 		return;
 	}
 
+	lockdep_assert_held(&isolcpus_update_mutex);
+	/*
+	 * Release cpus_read_lock & cpuset_mutex before calling
+	 * housekeeping_update() and re-acquiring them afterward if not
+	 * calling from task_work.
+	 */
+	if (!twork)
+		cpuset_full_unlock();
 	ret = housekeeping_update(isolated_cpus);
 	WARN_ON_ONCE(ret < 0);
+	if (!twork)
+		cpuset_full_lock();
 
 	isolated_cpus_updating = false;
 }
@@ -3196,6 +3223,7 @@ ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
 		return -EACCES;
 
 	buf = strstrip(buf);
+	mutex_lock(&isolcpus_update_mutex);
 	cpuset_full_lock();
 	if (!is_cpuset_online(cs))
 		goto out_unlock;
@@ -3226,6 +3254,7 @@ ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
 		rebuild_sched_domains_locked();
 out_unlock:
 	cpuset_full_unlock();
+	mutex_unlock(&isolcpus_update_mutex);
 	if (of_cft(of)->private == FILE_MEMLIST)
 		schedule_flush_migrate_mm();
 	return retval ?: nbytes;
@@ -3329,6 +3358,7 @@ static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
 	else
 		return -EINVAL;
 
+	guard(mutex)(&isolcpus_update_mutex);
 	cpuset_full_lock();
 	if (is_cpuset_online(cs))
 		retval = update_prstate(cs, val);
@@ -3502,6 +3532,7 @@ static void cpuset_css_killed(struct cgroup_subsys_state *css)
 {
 	struct cpuset *cs = css_cs(css);
 
+	guard(mutex)(&isolcpus_update_mutex);
 	cpuset_full_lock();
 	/* Reset valid partition back to member */
 	if (is_partition_valid(cs))
diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
index 3b725d39c06e..ef152d401fe2 100644
--- a/kernel/sched/isolation.c
+++ b/kernel/sched/isolation.c
@@ -123,8 +123,6 @@ int housekeeping_update(struct cpumask *isol_mask)
 	struct cpumask *trial, *old = NULL;
 	int err;
 
-	lockdep_assert_cpus_held();
-
 	trial = kmalloc(cpumask_size(), GFP_KERNEL);
 	if (!trial)
 		return -ENOMEM;
@@ -136,7 +134,7 @@ int housekeeping_update(struct cpumask *isol_mask)
 	}
 
 	if (!housekeeping.flags)
-		static_branch_enable_cpuslocked(&housekeeping_overridden);
+		static_branch_enable(&housekeeping_overridden);
 
 	if (housekeeping.flags & HK_FLAG_DOMAIN)
 		old = housekeeping_cpumask_dereference(HK_TYPE_DOMAIN);
diff --git a/kernel/time/timer_migration.c b/kernel/time/timer_migration.c
index 6da9cd562b20..244a8d025e78 100644
--- a/kernel/time/timer_migration.c
+++ b/kernel/time/timer_migration.c
@@ -1559,8 +1559,6 @@ int tmigr_isolated_exclude_cpumask(struct cpumask *exclude_cpumask)
 	cpumask_var_t cpumask __free(free_cpumask_var) = CPUMASK_VAR_NULL;
 	int cpu;
 
-	lockdep_assert_cpus_held();
-
 	if (!works)
 		return -ENOMEM;
 	if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
@@ -1570,6 +1568,7 @@ int tmigr_isolated_exclude_cpumask(struct cpumask *exclude_cpumask)
 	 * First set previously isolated CPUs as available (unisolate).
 	 * This cpumask contains only CPUs that switched to available now.
 	 */
+	guard(cpus_read_lock)();
 	cpumask_andnot(cpumask, cpu_online_mask, exclude_cpumask);
 	cpumask_andnot(cpumask, cpumask, tmigr_available_cpumask);
 
-- 
2.52.0
Re: [PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex
Posted by Chen Ridong 1 week, 3 days ago

On 2026/1/28 12:42, Waiman Long wrote:
> The current cpuset partition code is able to dynamically update
> the sched domains of a running system and the corresponding
> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
> "isolcpus=domain,..." boot command line feature at run time.
> 
> The housekeeping cpumask update requires flushing a number of different
> workqueues which may not be safe with cpus_read_lock() held as the
> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
> which have locking dependency with cpus_read_lock() down the chain. Below
> is an example of such circular locking problem.
> 
>   ======================================================
>   WARNING: possible circular locking dependency detected
>   6.18.0-test+ #2 Tainted: G S
>   ------------------------------------------------------
>   test_cpuset_prs/10971 is trying to acquire lock:
>   ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at: touch_wq_lockdep_map+0x7a/0x180
> 
>   but task is already holding lock:
>   ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130
> 
>   which lock already depends on the new lock.
> 
>   the existing dependency chain (in reverse order) is:
>   -> #4 (cpuset_mutex){+.+.}-{4:4}:
>   -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>   -> #2 (rtnl_mutex){+.+.}-{4:4}:
>   -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>   -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
> 
>   Chain exists of:
>     (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
> 
>   5 locks held by test_cpuset_prs/10971:
>    #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
>    #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at: kernfs_fop_write_iter+0x260/0x5f0
>    #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x2b6/0x5f0
>    #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at: cpuset_partition_write+0x77/0x130
>    #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130
> 
>   Call Trace:
>    <TASK>
>      :
>    touch_wq_lockdep_map+0x93/0x180
>    __flush_workqueue+0x111/0x10b0
>    housekeeping_update+0x12d/0x2d0
>    update_parent_effective_cpumask+0x595/0x2440
>    update_prstate+0x89d/0xce0
>    cpuset_partition_write+0xc5/0x130
>    cgroup_file_write+0x1a5/0x680
>    kernfs_fop_write_iter+0x3df/0x5f0
>    vfs_write+0x525/0xfd0
>    ksys_write+0xf9/0x1d0
>    do_syscall_64+0x95/0x520
>    entry_SYSCALL_64_after_hwframe+0x76/0x7e
> 
> To avoid such a circular locking dependency problem, we have to
> call housekeeping_update() without holding the cpus_read_lock()
> and cpuset_mutex. One way to do that is to introduce a new top level
> isolcpus_update_mutex which will be acquired first if the set of isolated
> CPUs may have to be updated. This new isolcpus_update_mutex will provide
> the need mutual exclusion without the need to hold cpus_read_lock().
> 
> As cpus_read_lock() is now no longer held when
> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
> directly.
> 
> The lockdep_is_cpuset_held() is also updated to check the new
> isolcpus_update_mutex.
> 

I worry about the issue:

CPU1				CPU2
rmdir
css->ss->css_killed(css);			
cpuset_css_killed
				__update_isolation_cpumasks
				cpuset_full_unlock
css->flags |= CSS_DYING;
css_clear_dir(css);
...
// offline and free do not
// get isolcpus_update_mutex
cpuset_css_offline
cpuset_css_free
				cpuset_full_lock
				...
				// UAF?

> Signed-off-by: Waiman Long <longman@redhat.com>
> ---
>  kernel/cgroup/cpuset.c        | 79 ++++++++++++++++++++++++-----------
>  kernel/sched/isolation.c      |  4 +-
>  kernel/time/timer_migration.c |  3 +-
>  3 files changed, 57 insertions(+), 29 deletions(-)
> 
> diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
> index 98c7cb732206..96390ceb5122 100644
> --- a/kernel/cgroup/cpuset.c
> +++ b/kernel/cgroup/cpuset.c
> @@ -78,7 +78,7 @@ static cpumask_var_t	subpartitions_cpus;
>  static cpumask_var_t	isolated_cpus;
>  
>  /*
> - * isolated_cpus updating flag (protected by cpuset_mutex)
> + * isolated_cpus updating flag (protected by isolcpus_update_mutex)
>   * Set if isolated_cpus is going to be updated in the current
>   * cpuset_mutex crtical section.
>   */
> @@ -223,29 +223,46 @@ struct cpuset top_cpuset = {
>  };
>  
>  /*
> - * There are two global locks guarding cpuset structures - cpuset_mutex and
> - * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
> - * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
> - * structures. Note that cpuset_mutex needs to be a mutex as it is used in
> - * paths that rely on priority inheritance (e.g. scheduler - on RT) for
> - * correctness.
> + * CPUSET Locking Convention
> + * -------------------------
>   *
> - * A task must hold both locks to modify cpusets.  If a task holds
> - * cpuset_mutex, it blocks others, ensuring that it is the only task able to
> - * also acquire callback_lock and be able to modify cpusets.  It can perform
> - * various checks on the cpuset structure first, knowing nothing will change.
> - * It can also allocate memory while just holding cpuset_mutex.  While it is
> - * performing these checks, various callback routines can briefly acquire
> - * callback_lock to query cpusets.  Once it is ready to make the changes, it
> - * takes callback_lock, blocking everyone else.
> + * Below are the three global locks guarding cpuset structures in lock
> + * acquisition order:
> + *  - isolcpus_update_mutex (optional)
> + *  - cpu_hotplug_lock (cpus_read_lock/cpus_write_lock)
> + *  - cpuset_mutex
> + *  - callback_lock (raw spinlock)
>   *
> - * Calls to the kernel memory allocator can not be made while holding
> - * callback_lock, as that would risk double tripping on callback_lock
> - * from one of the callbacks into the cpuset code from within
> - * __alloc_pages().
> + * The first isolcpus_update_mutex should only be held if the existing set of
> + * isolated CPUs (in isolated partition) or any of the partition states may be
> + * changed when some cpuset control files are being written into. Otherwise,
> + * it can be skipped. Holding isolcpus_update_mutex/cpus_read_lock or
> + * cpus_write_lock will ensure mutual exclusion of isolated_cpus update.
>   *
> - * If a task is only holding callback_lock, then it has read-only
> - * access to cpusets.
> + * As cpuset will now indirectly flush a number of different workqueues in
> + * housekeeping_update() when the set of isolated CPUs is going to be changed,
> + * it may not be safe from the circular locking perspective to hold the
> + * cpus_read_lock. So cpuset_full_lock() will be released before calling
> + * housekeeping_update() and re-acquired afterward.
> + *
> + * A task must hold all the remaining three locks to modify externally visible
> + * or used fields of cpusets, though some of the internally used cpuset fields
> + * can be modified by holding cpu_hotplug_lock and cpuset_mutex only. If only
> + * reliable read access of the externally used fields are needed, a task can
> + * hold either cpuset_mutex or callback_lock.
> + *
> + * If a task holds cpu_hotplug_lock and cpuset_mutex, it blocks others,
> + * ensuring that it is the only task able to also acquire callback_lock and
> + * be able to modify cpusets.  It can perform various checks on the cpuset
> + * structure first, knowing nothing will change. It can also allocate memory
> + * without holding callback_lock. While it is performing these checks, various
> + * callback routines can briefly acquire callback_lock to query cpusets.  Once
> + * it is ready to make the changes, it takes callback_lock, blocking everyone
> + * else.
> + *
> + * Calls to the kernel memory allocator cannot be made while holding
> + * callback_lock which is a spinlock, as the memory allocator may sleep or
> + * call back into cpuset code and acquire callback_lock.
>   *
>   * Now, the task_struct fields mems_allowed and mempolicy may be changed
>   * by other task, we use alloc_lock in the task_struct fields to protect
> @@ -256,6 +273,7 @@ struct cpuset top_cpuset = {
>   * cpumasks and nodemasks.
>   */
>  
> +static DEFINE_MUTEX(isolcpus_update_mutex);
>  static DEFINE_MUTEX(cpuset_mutex);
>  
>  /**
> @@ -302,7 +320,7 @@ void cpuset_full_unlock(void)
>  #ifdef CONFIG_LOCKDEP
>  bool lockdep_is_cpuset_held(void)
>  {
> -	return lockdep_is_held(&cpuset_mutex);
> +	return lockdep_is_held(&isolcpus_update_mutex);
>  }
>  #endif
>  
> @@ -1294,9 +1312,8 @@ static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
>  static void __update_isolation_cpumasks(bool twork);
>  static void isolation_task_work_fn(struct callback_head *cb)
>  {
> -	cpuset_full_lock();
> +	guard(mutex)(&isolcpus_update_mutex);
>  	__update_isolation_cpumasks(true);
> -	cpuset_full_lock();
>  }
>  
>  /*
> @@ -1338,8 +1355,18 @@ static void __update_isolation_cpumasks(bool twork)
>  		return;
>  	}
>  
> +	lockdep_assert_held(&isolcpus_update_mutex);
> +	/*
> +	 * Release cpus_read_lock & cpuset_mutex before calling
> +	 * housekeeping_update() and re-acquiring them afterward if not
> +	 * calling from task_work.
> +	 */
> +	if (!twork)
> +		cpuset_full_unlock();
>  	ret = housekeeping_update(isolated_cpus);
>  	WARN_ON_ONCE(ret < 0);
> +	if (!twork)
> +		cpuset_full_lock();
>  
>  	isolated_cpus_updating = false;
>  }
> @@ -3196,6 +3223,7 @@ ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
>  		return -EACCES;
>  
>  	buf = strstrip(buf);
> +	mutex_lock(&isolcpus_update_mutex);
>  	cpuset_full_lock();
>  	if (!is_cpuset_online(cs))
>  		goto out_unlock;
> @@ -3226,6 +3254,7 @@ ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
>  		rebuild_sched_domains_locked();
>  out_unlock:
>  	cpuset_full_unlock();
> +	mutex_unlock(&isolcpus_update_mutex);
>  	if (of_cft(of)->private == FILE_MEMLIST)
>  		schedule_flush_migrate_mm();
>  	return retval ?: nbytes;
> @@ -3329,6 +3358,7 @@ static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
>  	else
>  		return -EINVAL;
>  
> +	guard(mutex)(&isolcpus_update_mutex);
>  	cpuset_full_lock();
>  	if (is_cpuset_online(cs))
>  		retval = update_prstate(cs, val);
> @@ -3502,6 +3532,7 @@ static void cpuset_css_killed(struct cgroup_subsys_state *css)
>  {
>  	struct cpuset *cs = css_cs(css);
>  
> +	guard(mutex)(&isolcpus_update_mutex);
>  	cpuset_full_lock();
>  	/* Reset valid partition back to member */
>  	if (is_partition_valid(cs))
> diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
> index 3b725d39c06e..ef152d401fe2 100644
> --- a/kernel/sched/isolation.c
> +++ b/kernel/sched/isolation.c
> @@ -123,8 +123,6 @@ int housekeeping_update(struct cpumask *isol_mask)
>  	struct cpumask *trial, *old = NULL;
>  	int err;
>  
> -	lockdep_assert_cpus_held();
> -
>  	trial = kmalloc(cpumask_size(), GFP_KERNEL);
>  	if (!trial)
>  		return -ENOMEM;
> @@ -136,7 +134,7 @@ int housekeeping_update(struct cpumask *isol_mask)
>  	}
>  
>  	if (!housekeeping.flags)
> -		static_branch_enable_cpuslocked(&housekeeping_overridden);
> +		static_branch_enable(&housekeeping_overridden);
>  
>  	if (housekeeping.flags & HK_FLAG_DOMAIN)
>  		old = housekeeping_cpumask_dereference(HK_TYPE_DOMAIN);
> diff --git a/kernel/time/timer_migration.c b/kernel/time/timer_migration.c
> index 6da9cd562b20..244a8d025e78 100644
> --- a/kernel/time/timer_migration.c
> +++ b/kernel/time/timer_migration.c
> @@ -1559,8 +1559,6 @@ int tmigr_isolated_exclude_cpumask(struct cpumask *exclude_cpumask)
>  	cpumask_var_t cpumask __free(free_cpumask_var) = CPUMASK_VAR_NULL;
>  	int cpu;
>  
> -	lockdep_assert_cpus_held();
> -
>  	if (!works)
>  		return -ENOMEM;
>  	if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
> @@ -1570,6 +1568,7 @@ int tmigr_isolated_exclude_cpumask(struct cpumask *exclude_cpumask)
>  	 * First set previously isolated CPUs as available (unisolate).
>  	 * This cpumask contains only CPUs that switched to available now.
>  	 */
> +	guard(cpus_read_lock)();
>  	cpumask_andnot(cpumask, cpu_online_mask, exclude_cpumask);
>  	cpumask_andnot(cpumask, cpumask, tmigr_available_cpumask);
>  

-- 
Best regards,
Ridong
Re: [PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex
Posted by Waiman Long 1 week, 2 days ago
On 1/29/26 3:01 AM, Chen Ridong wrote:
>
> On 2026/1/28 12:42, Waiman Long wrote:
>> The current cpuset partition code is able to dynamically update
>> the sched domains of a running system and the corresponding
>> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
>> "isolcpus=domain,..." boot command line feature at run time.
>>
>> The housekeeping cpumask update requires flushing a number of different
>> workqueues which may not be safe with cpus_read_lock() held as the
>> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
>> which have locking dependency with cpus_read_lock() down the chain. Below
>> is an example of such circular locking problem.
>>
>>    ======================================================
>>    WARNING: possible circular locking dependency detected
>>    6.18.0-test+ #2 Tainted: G S
>>    ------------------------------------------------------
>>    test_cpuset_prs/10971 is trying to acquire lock:
>>    ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at: touch_wq_lockdep_map+0x7a/0x180
>>
>>    but task is already holding lock:
>>    ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130
>>
>>    which lock already depends on the new lock.
>>
>>    the existing dependency chain (in reverse order) is:
>>    -> #4 (cpuset_mutex){+.+.}-{4:4}:
>>    -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>>    -> #2 (rtnl_mutex){+.+.}-{4:4}:
>>    -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>>    -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
>>
>>    Chain exists of:
>>      (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
>>
>>    5 locks held by test_cpuset_prs/10971:
>>     #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
>>     #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at: kernfs_fop_write_iter+0x260/0x5f0
>>     #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x2b6/0x5f0
>>     #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at: cpuset_partition_write+0x77/0x130
>>     #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130
>>
>>    Call Trace:
>>     <TASK>
>>       :
>>     touch_wq_lockdep_map+0x93/0x180
>>     __flush_workqueue+0x111/0x10b0
>>     housekeeping_update+0x12d/0x2d0
>>     update_parent_effective_cpumask+0x595/0x2440
>>     update_prstate+0x89d/0xce0
>>     cpuset_partition_write+0xc5/0x130
>>     cgroup_file_write+0x1a5/0x680
>>     kernfs_fop_write_iter+0x3df/0x5f0
>>     vfs_write+0x525/0xfd0
>>     ksys_write+0xf9/0x1d0
>>     do_syscall_64+0x95/0x520
>>     entry_SYSCALL_64_after_hwframe+0x76/0x7e
>>
>> To avoid such a circular locking dependency problem, we have to
>> call housekeeping_update() without holding the cpus_read_lock()
>> and cpuset_mutex. One way to do that is to introduce a new top level
>> isolcpus_update_mutex which will be acquired first if the set of isolated
>> CPUs may have to be updated. This new isolcpus_update_mutex will provide
>> the need mutual exclusion without the need to hold cpus_read_lock().
>>
>> As cpus_read_lock() is now no longer held when
>> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
>> directly.
>>
>> The lockdep_is_cpuset_held() is also updated to check the new
>> isolcpus_update_mutex.
>>
> I worry about the issue:
>
> CPU1				CPU2
> rmdir
> css->ss->css_killed(css);			
> cpuset_css_killed
> 				__update_isolation_cpumasks
> 				cpuset_full_unlock
> css->flags |= CSS_DYING;
> css_clear_dir(css);
> ...
> // offline and free do not
> // get isolcpus_update_mutex
> cpuset_css_offline
> cpuset_css_free
> 				cpuset_full_lock
> 				...
> 				// UAF?
>
That is the reason why I add a new top-level isolcpus_update_mutex. 
cpuset_css_killed() and the update_isolation_cpumasks()'s unlock/lock 
sequence will have to acquire this isolcpus_update_mutex first.

As long as all the possible paths (except CPU hotplug) that can call 
into update_isolation_cpumasks() has acquired isolcpus_update_mutex, it 
will block cpuset_css_killed() from completing. Note that I add a 
"lockdep_assert_held(&isolcpus_update_mutex);" in 
update_isolation_cpumasks().

Cheers,
Longman

>> Signed-off-by: Waiman Long <longman@redhat.com>
>> ---
>>   kernel/cgroup/cpuset.c        | 79 ++++++++++++++++++++++++-----------
>>   kernel/sched/isolation.c      |  4 +-
>>   kernel/time/timer_migration.c |  3 +-
>>   3 files changed, 57 insertions(+), 29 deletions(-)
>>
>> diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
>> index 98c7cb732206..96390ceb5122 100644
>> --- a/kernel/cgroup/cpuset.c
>> +++ b/kernel/cgroup/cpuset.c
>> @@ -78,7 +78,7 @@ static cpumask_var_t	subpartitions_cpus;
>>   static cpumask_var_t	isolated_cpus;
>>   
>>   /*
>> - * isolated_cpus updating flag (protected by cpuset_mutex)
>> + * isolated_cpus updating flag (protected by isolcpus_update_mutex)
>>    * Set if isolated_cpus is going to be updated in the current
>>    * cpuset_mutex crtical section.
>>    */
>> @@ -223,29 +223,46 @@ struct cpuset top_cpuset = {
>>   };
>>   
>>   /*
>> - * There are two global locks guarding cpuset structures - cpuset_mutex and
>> - * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
>> - * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
>> - * structures. Note that cpuset_mutex needs to be a mutex as it is used in
>> - * paths that rely on priority inheritance (e.g. scheduler - on RT) for
>> - * correctness.
>> + * CPUSET Locking Convention
>> + * -------------------------
>>    *
>> - * A task must hold both locks to modify cpusets.  If a task holds
>> - * cpuset_mutex, it blocks others, ensuring that it is the only task able to
>> - * also acquire callback_lock and be able to modify cpusets.  It can perform
>> - * various checks on the cpuset structure first, knowing nothing will change.
>> - * It can also allocate memory while just holding cpuset_mutex.  While it is
>> - * performing these checks, various callback routines can briefly acquire
>> - * callback_lock to query cpusets.  Once it is ready to make the changes, it
>> - * takes callback_lock, blocking everyone else.
>> + * Below are the three global locks guarding cpuset structures in lock
>> + * acquisition order:
>> + *  - isolcpus_update_mutex (optional)
>> + *  - cpu_hotplug_lock (cpus_read_lock/cpus_write_lock)
>> + *  - cpuset_mutex
>> + *  - callback_lock (raw spinlock)
>>    *
>> - * Calls to the kernel memory allocator can not be made while holding
>> - * callback_lock, as that would risk double tripping on callback_lock
>> - * from one of the callbacks into the cpuset code from within
>> - * __alloc_pages().
>> + * The first isolcpus_update_mutex should only be held if the existing set of
>> + * isolated CPUs (in isolated partition) or any of the partition states may be
>> + * changed when some cpuset control files are being written into. Otherwise,
>> + * it can be skipped. Holding isolcpus_update_mutex/cpus_read_lock or
>> + * cpus_write_lock will ensure mutual exclusion of isolated_cpus update.
>>    *
>> - * If a task is only holding callback_lock, then it has read-only
>> - * access to cpusets.
>> + * As cpuset will now indirectly flush a number of different workqueues in
>> + * housekeeping_update() when the set of isolated CPUs is going to be changed,
>> + * it may not be safe from the circular locking perspective to hold the
>> + * cpus_read_lock. So cpuset_full_lock() will be released before calling
>> + * housekeeping_update() and re-acquired afterward.
>> + *
>> + * A task must hold all the remaining three locks to modify externally visible
>> + * or used fields of cpusets, though some of the internally used cpuset fields
>> + * can be modified by holding cpu_hotplug_lock and cpuset_mutex only. If only
>> + * reliable read access of the externally used fields are needed, a task can
>> + * hold either cpuset_mutex or callback_lock.
>> + *
>> + * If a task holds cpu_hotplug_lock and cpuset_mutex, it blocks others,
>> + * ensuring that it is the only task able to also acquire callback_lock and
>> + * be able to modify cpusets.  It can perform various checks on the cpuset
>> + * structure first, knowing nothing will change. It can also allocate memory
>> + * without holding callback_lock. While it is performing these checks, various
>> + * callback routines can briefly acquire callback_lock to query cpusets.  Once
>> + * it is ready to make the changes, it takes callback_lock, blocking everyone
>> + * else.
>> + *
>> + * Calls to the kernel memory allocator cannot be made while holding
>> + * callback_lock which is a spinlock, as the memory allocator may sleep or
>> + * call back into cpuset code and acquire callback_lock.
>>    *
>>    * Now, the task_struct fields mems_allowed and mempolicy may be changed
>>    * by other task, we use alloc_lock in the task_struct fields to protect
>> @@ -256,6 +273,7 @@ struct cpuset top_cpuset = {
>>    * cpumasks and nodemasks.
>>    */
>>   
>> +static DEFINE_MUTEX(isolcpus_update_mutex);
>>   static DEFINE_MUTEX(cpuset_mutex);
>>   
>>   /**
>> @@ -302,7 +320,7 @@ void cpuset_full_unlock(void)
>>   #ifdef CONFIG_LOCKDEP
>>   bool lockdep_is_cpuset_held(void)
>>   {
>> -	return lockdep_is_held(&cpuset_mutex);
>> +	return lockdep_is_held(&isolcpus_update_mutex);
>>   }
>>   #endif
>>   
>> @@ -1294,9 +1312,8 @@ static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
>>   static void __update_isolation_cpumasks(bool twork);
>>   static void isolation_task_work_fn(struct callback_head *cb)
>>   {
>> -	cpuset_full_lock();
>> +	guard(mutex)(&isolcpus_update_mutex);
>>   	__update_isolation_cpumasks(true);
>> -	cpuset_full_lock();
>>   }
>>   
>>   /*
>> @@ -1338,8 +1355,18 @@ static void __update_isolation_cpumasks(bool twork)
>>   		return;
>>   	}
>>   
>> +	lockdep_assert_held(&isolcpus_update_mutex);
>> +	/*
>> +	 * Release cpus_read_lock & cpuset_mutex before calling
>> +	 * housekeeping_update() and re-acquiring them afterward if not
>> +	 * calling from task_work.
>> +	 */
>> +	if (!twork)
>> +		cpuset_full_unlock();
>>   	ret = housekeeping_update(isolated_cpus);
>>   	WARN_ON_ONCE(ret < 0);
>> +	if (!twork)
>> +		cpuset_full_lock();
>>   
>>   	isolated_cpus_updating = false;
>>   }
>> @@ -3196,6 +3223,7 @@ ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
>>   		return -EACCES;
>>   
>>   	buf = strstrip(buf);
>> +	mutex_lock(&isolcpus_update_mutex);
>>   	cpuset_full_lock();
>>   	if (!is_cpuset_online(cs))
>>   		goto out_unlock;
>> @@ -3226,6 +3254,7 @@ ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
>>   		rebuild_sched_domains_locked();
>>   out_unlock:
>>   	cpuset_full_unlock();
>> +	mutex_unlock(&isolcpus_update_mutex);
>>   	if (of_cft(of)->private == FILE_MEMLIST)
>>   		schedule_flush_migrate_mm();
>>   	return retval ?: nbytes;
>> @@ -3329,6 +3358,7 @@ static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
>>   	else
>>   		return -EINVAL;
>>   
>> +	guard(mutex)(&isolcpus_update_mutex);
>>   	cpuset_full_lock();
>>   	if (is_cpuset_online(cs))
>>   		retval = update_prstate(cs, val);
>> @@ -3502,6 +3532,7 @@ static void cpuset_css_killed(struct cgroup_subsys_state *css)
>>   {
>>   	struct cpuset *cs = css_cs(css);
>>   
>> +	guard(mutex)(&isolcpus_update_mutex);
>>   	cpuset_full_lock();
>>   	/* Reset valid partition back to member */
>>   	if (is_partition_valid(cs))
>> diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
>> index 3b725d39c06e..ef152d401fe2 100644
>> --- a/kernel/sched/isolation.c
>> +++ b/kernel/sched/isolation.c
>> @@ -123,8 +123,6 @@ int housekeeping_update(struct cpumask *isol_mask)
>>   	struct cpumask *trial, *old = NULL;
>>   	int err;
>>   
>> -	lockdep_assert_cpus_held();
>> -
>>   	trial = kmalloc(cpumask_size(), GFP_KERNEL);
>>   	if (!trial)
>>   		return -ENOMEM;
>> @@ -136,7 +134,7 @@ int housekeeping_update(struct cpumask *isol_mask)
>>   	}
>>   
>>   	if (!housekeeping.flags)
>> -		static_branch_enable_cpuslocked(&housekeeping_overridden);
>> +		static_branch_enable(&housekeeping_overridden);
>>   
>>   	if (housekeeping.flags & HK_FLAG_DOMAIN)
>>   		old = housekeeping_cpumask_dereference(HK_TYPE_DOMAIN);
>> diff --git a/kernel/time/timer_migration.c b/kernel/time/timer_migration.c
>> index 6da9cd562b20..244a8d025e78 100644
>> --- a/kernel/time/timer_migration.c
>> +++ b/kernel/time/timer_migration.c
>> @@ -1559,8 +1559,6 @@ int tmigr_isolated_exclude_cpumask(struct cpumask *exclude_cpumask)
>>   	cpumask_var_t cpumask __free(free_cpumask_var) = CPUMASK_VAR_NULL;
>>   	int cpu;
>>   
>> -	lockdep_assert_cpus_held();
>> -
>>   	if (!works)
>>   		return -ENOMEM;
>>   	if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
>> @@ -1570,6 +1568,7 @@ int tmigr_isolated_exclude_cpumask(struct cpumask *exclude_cpumask)
>>   	 * First set previously isolated CPUs as available (unisolate).
>>   	 * This cpumask contains only CPUs that switched to available now.
>>   	 */
>> +	guard(cpus_read_lock)();
>>   	cpumask_andnot(cpumask, cpu_online_mask, exclude_cpumask);
>>   	cpumask_andnot(cpumask, cpumask, tmigr_available_cpumask);
>>
Re: [PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex
Posted by Chen Ridong 1 week, 2 days ago

On 2026/1/30 5:16, Waiman Long wrote:
> On 1/29/26 3:01 AM, Chen Ridong wrote:
>>
>> On 2026/1/28 12:42, Waiman Long wrote:
>>> The current cpuset partition code is able to dynamically update
>>> the sched domains of a running system and the corresponding
>>> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
>>> "isolcpus=domain,..." boot command line feature at run time.
>>>
>>> The housekeeping cpumask update requires flushing a number of different
>>> workqueues which may not be safe with cpus_read_lock() held as the
>>> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
>>> which have locking dependency with cpus_read_lock() down the chain. Below
>>> is an example of such circular locking problem.
>>>
>>>    ======================================================
>>>    WARNING: possible circular locking dependency detected
>>>    6.18.0-test+ #2 Tainted: G S
>>>    ------------------------------------------------------
>>>    test_cpuset_prs/10971 is trying to acquire lock:
>>>    ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at:
>>> touch_wq_lockdep_map+0x7a/0x180
>>>
>>>    but task is already holding lock:
>>>    ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>> cpuset_partition_write+0x85/0x130
>>>
>>>    which lock already depends on the new lock.
>>>
>>>    the existing dependency chain (in reverse order) is:
>>>    -> #4 (cpuset_mutex){+.+.}-{4:4}:
>>>    -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>>>    -> #2 (rtnl_mutex){+.+.}-{4:4}:
>>>    -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>>>    -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
>>>
>>>    Chain exists of:
>>>      (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
>>>
>>>    5 locks held by test_cpuset_prs/10971:
>>>     #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
>>>     #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at:
>>> kernfs_fop_write_iter+0x260/0x5f0
>>>     #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at:
>>> kernfs_fop_write_iter+0x2b6/0x5f0
>>>     #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at:
>>> cpuset_partition_write+0x77/0x130
>>>     #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>> cpuset_partition_write+0x85/0x130
>>>
>>>    Call Trace:
>>>     <TASK>
>>>       :
>>>     touch_wq_lockdep_map+0x93/0x180
>>>     __flush_workqueue+0x111/0x10b0
>>>     housekeeping_update+0x12d/0x2d0
>>>     update_parent_effective_cpumask+0x595/0x2440
>>>     update_prstate+0x89d/0xce0
>>>     cpuset_partition_write+0xc5/0x130
>>>     cgroup_file_write+0x1a5/0x680
>>>     kernfs_fop_write_iter+0x3df/0x5f0
>>>     vfs_write+0x525/0xfd0
>>>     ksys_write+0xf9/0x1d0
>>>     do_syscall_64+0x95/0x520
>>>     entry_SYSCALL_64_after_hwframe+0x76/0x7e
>>>
>>> To avoid such a circular locking dependency problem, we have to
>>> call housekeeping_update() without holding the cpus_read_lock()
>>> and cpuset_mutex. One way to do that is to introduce a new top level
>>> isolcpus_update_mutex which will be acquired first if the set of isolated
>>> CPUs may have to be updated. This new isolcpus_update_mutex will provide
>>> the need mutual exclusion without the need to hold cpus_read_lock().
>>>
>>> As cpus_read_lock() is now no longer held when
>>> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
>>> directly.
>>>
>>> The lockdep_is_cpuset_held() is also updated to check the new
>>> isolcpus_update_mutex.
>>>
>> I worry about the issue:
>>
>> CPU1                CPU2
>> rmdir
>> css->ss->css_killed(css);           
>> cpuset_css_killed
>>                 __update_isolation_cpumasks
>>                 cpuset_full_unlock
>> css->flags |= CSS_DYING;
>> css_clear_dir(css);
>> ...
>> // offline and free do not
>> // get isolcpus_update_mutex
>> cpuset_css_offline
>> cpuset_css_free
>>                 cpuset_full_lock
>>                 ...
>>                 // UAF?
>>

Hi, Longman,

In this patch, I noticed that cpuset_css_offline and cpuset_css_free do not
acquire the isolcpus_update_mutex. This could potentially lead to a UAF issue.

> That is the reason why I add a new top-level isolcpus_update_mutex.
> cpuset_css_killed() and the update_isolation_cpumasks()'s unlock/lock sequence
> will have to acquire this isolcpus_update_mutex first.
> 

However, simply adding isolcpus_update_mutex to cpuset_css_killed and
update_isolation_cpumasks may not be sufficient.

As I mentioned, the path that calls __update_isolation_cpumasks may first
acquire isolcpus_update_mutex and cpuset_full_lock, but once cpuset_css_killed
is completed, it will release the “full” lock and then attempt to reacquire it
later. During this intermediate period, the cpuset may have already been freed,
because cpuset_css_offline and cpuset_css_free do not currently acquire the
isolcpus_update_mutex.

> As long as all the possible paths (except CPU hotplug) that can call into
> update_isolation_cpumasks() has acquired isolcpus_update_mutex, it will block
> cpuset_css_killed() from completing. Note that I add a
> "lockdep_assert_held(&isolcpus_update_mutex);" in update_isolation_cpumasks().
> 
-- 
Best regards,
Ridong

Re: [PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex
Posted by Waiman Long 1 week, 2 days ago
On 1/29/26 7:56 PM, Chen Ridong wrote:
>
> On 2026/1/30 5:16, Waiman Long wrote:
>> On 1/29/26 3:01 AM, Chen Ridong wrote:
>>> On 2026/1/28 12:42, Waiman Long wrote:
>>>> The current cpuset partition code is able to dynamically update
>>>> the sched domains of a running system and the corresponding
>>>> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
>>>> "isolcpus=domain,..." boot command line feature at run time.
>>>>
>>>> The housekeeping cpumask update requires flushing a number of different
>>>> workqueues which may not be safe with cpus_read_lock() held as the
>>>> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
>>>> which have locking dependency with cpus_read_lock() down the chain. Below
>>>> is an example of such circular locking problem.
>>>>
>>>>     ======================================================
>>>>     WARNING: possible circular locking dependency detected
>>>>     6.18.0-test+ #2 Tainted: G S
>>>>     ------------------------------------------------------
>>>>     test_cpuset_prs/10971 is trying to acquire lock:
>>>>     ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at:
>>>> touch_wq_lockdep_map+0x7a/0x180
>>>>
>>>>     but task is already holding lock:
>>>>     ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>>> cpuset_partition_write+0x85/0x130
>>>>
>>>>     which lock already depends on the new lock.
>>>>
>>>>     the existing dependency chain (in reverse order) is:
>>>>     -> #4 (cpuset_mutex){+.+.}-{4:4}:
>>>>     -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>>>>     -> #2 (rtnl_mutex){+.+.}-{4:4}:
>>>>     -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>>>>     -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
>>>>
>>>>     Chain exists of:
>>>>       (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
>>>>
>>>>     5 locks held by test_cpuset_prs/10971:
>>>>      #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
>>>>      #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at:
>>>> kernfs_fop_write_iter+0x260/0x5f0
>>>>      #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at:
>>>> kernfs_fop_write_iter+0x2b6/0x5f0
>>>>      #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at:
>>>> cpuset_partition_write+0x77/0x130
>>>>      #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>>> cpuset_partition_write+0x85/0x130
>>>>
>>>>     Call Trace:
>>>>      <TASK>
>>>>        :
>>>>      touch_wq_lockdep_map+0x93/0x180
>>>>      __flush_workqueue+0x111/0x10b0
>>>>      housekeeping_update+0x12d/0x2d0
>>>>      update_parent_effective_cpumask+0x595/0x2440
>>>>      update_prstate+0x89d/0xce0
>>>>      cpuset_partition_write+0xc5/0x130
>>>>      cgroup_file_write+0x1a5/0x680
>>>>      kernfs_fop_write_iter+0x3df/0x5f0
>>>>      vfs_write+0x525/0xfd0
>>>>      ksys_write+0xf9/0x1d0
>>>>      do_syscall_64+0x95/0x520
>>>>      entry_SYSCALL_64_after_hwframe+0x76/0x7e
>>>>
>>>> To avoid such a circular locking dependency problem, we have to
>>>> call housekeeping_update() without holding the cpus_read_lock()
>>>> and cpuset_mutex. One way to do that is to introduce a new top level
>>>> isolcpus_update_mutex which will be acquired first if the set of isolated
>>>> CPUs may have to be updated. This new isolcpus_update_mutex will provide
>>>> the need mutual exclusion without the need to hold cpus_read_lock().
>>>>
>>>> As cpus_read_lock() is now no longer held when
>>>> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
>>>> directly.
>>>>
>>>> The lockdep_is_cpuset_held() is also updated to check the new
>>>> isolcpus_update_mutex.
>>>>
>>> I worry about the issue:
>>>
>>> CPU1                CPU2
>>> rmdir
>>> css->ss->css_killed(css);
>>> cpuset_css_killed
>>>                  __update_isolation_cpumasks
>>>                  cpuset_full_unlock
>>> css->flags |= CSS_DYING;
>>> css_clear_dir(css);
>>> ...
>>> // offline and free do not
>>> // get isolcpus_update_mutex
>>> cpuset_css_offline
>>> cpuset_css_free
>>>                  cpuset_full_lock
>>>                  ...
>>>                  // UAF?
>>>
> Hi, Longman,
>
> In this patch, I noticed that cpuset_css_offline and cpuset_css_free do not
> acquire the isolcpus_update_mutex. This could potentially lead to a UAF issue.
>
>> That is the reason why I add a new top-level isolcpus_update_mutex.
>> cpuset_css_killed() and the update_isolation_cpumasks()'s unlock/lock sequence
>> will have to acquire this isolcpus_update_mutex first.
>>
> However, simply adding isolcpus_update_mutex to cpuset_css_killed and
> update_isolation_cpumasks may not be sufficient.
>
> As I mentioned, the path that calls __update_isolation_cpumasks may first
> acquire isolcpus_update_mutex and cpuset_full_lock, but once cpuset_css_killed
> is completed, it will release the “full” lock and then attempt to reacquire it
> later. During this intermediate period, the cpuset may have already been freed,
> because cpuset_css_offline and cpuset_css_free do not currently acquire the
> isolcpus_update_mutex.

You are right that acquisition of the new isolcpus_update_mutex should 
be in all the places where cpuset_full_lock() is acquired. Will update 
the patch to do that. That should eliminate the risk.

Cheers,
Longman

Re: [PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex
Posted by Chen Ridong 1 week, 2 days ago

On 2026/1/30 9:35, Waiman Long wrote:
> On 1/29/26 7:56 PM, Chen Ridong wrote:
>>
>> On 2026/1/30 5:16, Waiman Long wrote:
>>> On 1/29/26 3:01 AM, Chen Ridong wrote:
>>>> On 2026/1/28 12:42, Waiman Long wrote:
>>>>> The current cpuset partition code is able to dynamically update
>>>>> the sched domains of a running system and the corresponding
>>>>> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
>>>>> "isolcpus=domain,..." boot command line feature at run time.
>>>>>
>>>>> The housekeeping cpumask update requires flushing a number of different
>>>>> workqueues which may not be safe with cpus_read_lock() held as the
>>>>> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
>>>>> which have locking dependency with cpus_read_lock() down the chain. Below
>>>>> is an example of such circular locking problem.
>>>>>
>>>>>     ======================================================
>>>>>     WARNING: possible circular locking dependency detected
>>>>>     6.18.0-test+ #2 Tainted: G S
>>>>>     ------------------------------------------------------
>>>>>     test_cpuset_prs/10971 is trying to acquire lock:
>>>>>     ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at:
>>>>> touch_wq_lockdep_map+0x7a/0x180
>>>>>
>>>>>     but task is already holding lock:
>>>>>     ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>>>> cpuset_partition_write+0x85/0x130
>>>>>
>>>>>     which lock already depends on the new lock.
>>>>>
>>>>>     the existing dependency chain (in reverse order) is:
>>>>>     -> #4 (cpuset_mutex){+.+.}-{4:4}:
>>>>>     -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>>>>>     -> #2 (rtnl_mutex){+.+.}-{4:4}:
>>>>>     -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>>>>>     -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
>>>>>
>>>>>     Chain exists of:
>>>>>       (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
>>>>>
>>>>>     5 locks held by test_cpuset_prs/10971:
>>>>>      #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at:
>>>>> ksys_write+0xf9/0x1d0
>>>>>      #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at:
>>>>> kernfs_fop_write_iter+0x260/0x5f0
>>>>>      #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at:
>>>>> kernfs_fop_write_iter+0x2b6/0x5f0
>>>>>      #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at:
>>>>> cpuset_partition_write+0x77/0x130
>>>>>      #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>>>> cpuset_partition_write+0x85/0x130
>>>>>
>>>>>     Call Trace:
>>>>>      <TASK>
>>>>>        :
>>>>>      touch_wq_lockdep_map+0x93/0x180
>>>>>      __flush_workqueue+0x111/0x10b0
>>>>>      housekeeping_update+0x12d/0x2d0
>>>>>      update_parent_effective_cpumask+0x595/0x2440
>>>>>      update_prstate+0x89d/0xce0
>>>>>      cpuset_partition_write+0xc5/0x130
>>>>>      cgroup_file_write+0x1a5/0x680
>>>>>      kernfs_fop_write_iter+0x3df/0x5f0
>>>>>      vfs_write+0x525/0xfd0
>>>>>      ksys_write+0xf9/0x1d0
>>>>>      do_syscall_64+0x95/0x520
>>>>>      entry_SYSCALL_64_after_hwframe+0x76/0x7e
>>>>>
>>>>> To avoid such a circular locking dependency problem, we have to
>>>>> call housekeeping_update() without holding the cpus_read_lock()
>>>>> and cpuset_mutex. One way to do that is to introduce a new top level
>>>>> isolcpus_update_mutex which will be acquired first if the set of isolated
>>>>> CPUs may have to be updated. This new isolcpus_update_mutex will provide
>>>>> the need mutual exclusion without the need to hold cpus_read_lock().
>>>>>
>>>>> As cpus_read_lock() is now no longer held when
>>>>> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
>>>>> directly.
>>>>>
>>>>> The lockdep_is_cpuset_held() is also updated to check the new
>>>>> isolcpus_update_mutex.
>>>>>
>>>> I worry about the issue:
>>>>
>>>> CPU1                CPU2
>>>> rmdir
>>>> css->ss->css_killed(css);
>>>> cpuset_css_killed
>>>>                  __update_isolation_cpumasks
>>>>                  cpuset_full_unlock
>>>> css->flags |= CSS_DYING;
>>>> css_clear_dir(css);
>>>> ...
>>>> // offline and free do not
>>>> // get isolcpus_update_mutex
>>>> cpuset_css_offline
>>>> cpuset_css_free
>>>>                  cpuset_full_lock
>>>>                  ...
>>>>                  // UAF?
>>>>
>> Hi, Longman,
>>
>> In this patch, I noticed that cpuset_css_offline and cpuset_css_free do not
>> acquire the isolcpus_update_mutex. This could potentially lead to a UAF issue.
>>
>>> That is the reason why I add a new top-level isolcpus_update_mutex.
>>> cpuset_css_killed() and the update_isolation_cpumasks()'s unlock/lock sequence
>>> will have to acquire this isolcpus_update_mutex first.
>>>
>> However, simply adding isolcpus_update_mutex to cpuset_css_killed and
>> update_isolation_cpumasks may not be sufficient.
>>
>> As I mentioned, the path that calls __update_isolation_cpumasks may first
>> acquire isolcpus_update_mutex and cpuset_full_lock, but once cpuset_css_killed
>> is completed, it will release the “full” lock and then attempt to reacquire it
>> later. During this intermediate period, the cpuset may have already been freed,
>> because cpuset_css_offline and cpuset_css_free do not currently acquire the
>> isolcpus_update_mutex.
> 
> You are right that acquisition of the new isolcpus_update_mutex should be in all
> the places where cpuset_full_lock() is acquired. Will update the patch to do
> that. That should eliminate the risk.
> 

I suggest that putting isolcpus_update_mutex into cpuset_full_lock, since this
function means that all the locks needed have been acquired.

void cpuset_full_lock(void)
{
	mutex_lock(&isolcpus_update_mutex);
	cpus_read_lock();
	mutex_lock(&cpuset_mutex);
}

void cpuset_full_unlock(void)
{
	mutex_unlock(&cpuset_mutex);
	cpus_read_unlock();
	mutex_unlock(&isolcpus_update_mutex);
}

In the __update_isolation_cpumasks function, we can pair:

```
	...
	mutex_unlock(&cpuset_mutex);
	cpus_read_unlock();
	... Actions
	cpus_read_lock();
	mutex_lock(&cpuset_mutex);
	...
```

-- 
Best regards,
Ridong

Re: [PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex
Posted by Waiman Long 1 week, 2 days ago
On 1/29/26 8:42 PM, Chen Ridong wrote:
>
> On 2026/1/30 9:35, Waiman Long wrote:
>> On 1/29/26 7:56 PM, Chen Ridong wrote:
>>> On 2026/1/30 5:16, Waiman Long wrote:
>>>> On 1/29/26 3:01 AM, Chen Ridong wrote:
>>>>> On 2026/1/28 12:42, Waiman Long wrote:
>>>>>> The current cpuset partition code is able to dynamically update
>>>>>> the sched domains of a running system and the corresponding
>>>>>> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
>>>>>> "isolcpus=domain,..." boot command line feature at run time.
>>>>>>
>>>>>> The housekeeping cpumask update requires flushing a number of different
>>>>>> workqueues which may not be safe with cpus_read_lock() held as the
>>>>>> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
>>>>>> which have locking dependency with cpus_read_lock() down the chain. Below
>>>>>> is an example of such circular locking problem.
>>>>>>
>>>>>>      ======================================================
>>>>>>      WARNING: possible circular locking dependency detected
>>>>>>      6.18.0-test+ #2 Tainted: G S
>>>>>>      ------------------------------------------------------
>>>>>>      test_cpuset_prs/10971 is trying to acquire lock:
>>>>>>      ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at:
>>>>>> touch_wq_lockdep_map+0x7a/0x180
>>>>>>
>>>>>>      but task is already holding lock:
>>>>>>      ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>>>>> cpuset_partition_write+0x85/0x130
>>>>>>
>>>>>>      which lock already depends on the new lock.
>>>>>>
>>>>>>      the existing dependency chain (in reverse order) is:
>>>>>>      -> #4 (cpuset_mutex){+.+.}-{4:4}:
>>>>>>      -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>>>>>>      -> #2 (rtnl_mutex){+.+.}-{4:4}:
>>>>>>      -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>>>>>>      -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
>>>>>>
>>>>>>      Chain exists of:
>>>>>>        (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
>>>>>>
>>>>>>      5 locks held by test_cpuset_prs/10971:
>>>>>>       #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at:
>>>>>> ksys_write+0xf9/0x1d0
>>>>>>       #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at:
>>>>>> kernfs_fop_write_iter+0x260/0x5f0
>>>>>>       #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at:
>>>>>> kernfs_fop_write_iter+0x2b6/0x5f0
>>>>>>       #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at:
>>>>>> cpuset_partition_write+0x77/0x130
>>>>>>       #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>>>>> cpuset_partition_write+0x85/0x130
>>>>>>
>>>>>>      Call Trace:
>>>>>>       <TASK>
>>>>>>         :
>>>>>>       touch_wq_lockdep_map+0x93/0x180
>>>>>>       __flush_workqueue+0x111/0x10b0
>>>>>>       housekeeping_update+0x12d/0x2d0
>>>>>>       update_parent_effective_cpumask+0x595/0x2440
>>>>>>       update_prstate+0x89d/0xce0
>>>>>>       cpuset_partition_write+0xc5/0x130
>>>>>>       cgroup_file_write+0x1a5/0x680
>>>>>>       kernfs_fop_write_iter+0x3df/0x5f0
>>>>>>       vfs_write+0x525/0xfd0
>>>>>>       ksys_write+0xf9/0x1d0
>>>>>>       do_syscall_64+0x95/0x520
>>>>>>       entry_SYSCALL_64_after_hwframe+0x76/0x7e
>>>>>>
>>>>>> To avoid such a circular locking dependency problem, we have to
>>>>>> call housekeeping_update() without holding the cpus_read_lock()
>>>>>> and cpuset_mutex. One way to do that is to introduce a new top level
>>>>>> isolcpus_update_mutex which will be acquired first if the set of isolated
>>>>>> CPUs may have to be updated. This new isolcpus_update_mutex will provide
>>>>>> the need mutual exclusion without the need to hold cpus_read_lock().
>>>>>>
>>>>>> As cpus_read_lock() is now no longer held when
>>>>>> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
>>>>>> directly.
>>>>>>
>>>>>> The lockdep_is_cpuset_held() is also updated to check the new
>>>>>> isolcpus_update_mutex.
>>>>>>
>>>>> I worry about the issue:
>>>>>
>>>>> CPU1                CPU2
>>>>> rmdir
>>>>> css->ss->css_killed(css);
>>>>> cpuset_css_killed
>>>>>                   __update_isolation_cpumasks
>>>>>                   cpuset_full_unlock
>>>>> css->flags |= CSS_DYING;
>>>>> css_clear_dir(css);
>>>>> ...
>>>>> // offline and free do not
>>>>> // get isolcpus_update_mutex
>>>>> cpuset_css_offline
>>>>> cpuset_css_free
>>>>>                   cpuset_full_lock
>>>>>                   ...
>>>>>                   // UAF?
>>>>>
>>> Hi, Longman,
>>>
>>> In this patch, I noticed that cpuset_css_offline and cpuset_css_free do not
>>> acquire the isolcpus_update_mutex. This could potentially lead to a UAF issue.
>>>
>>>> That is the reason why I add a new top-level isolcpus_update_mutex.
>>>> cpuset_css_killed() and the update_isolation_cpumasks()'s unlock/lock sequence
>>>> will have to acquire this isolcpus_update_mutex first.
>>>>
>>> However, simply adding isolcpus_update_mutex to cpuset_css_killed and
>>> update_isolation_cpumasks may not be sufficient.
>>>
>>> As I mentioned, the path that calls __update_isolation_cpumasks may first
>>> acquire isolcpus_update_mutex and cpuset_full_lock, but once cpuset_css_killed
>>> is completed, it will release the “full” lock and then attempt to reacquire it
>>> later. During this intermediate period, the cpuset may have already been freed,
>>> because cpuset_css_offline and cpuset_css_free do not currently acquire the
>>> isolcpus_update_mutex.
>> You are right that acquisition of the new isolcpus_update_mutex should be in all
>> the places where cpuset_full_lock() is acquired. Will update the patch to do
>> that. That should eliminate the risk.
>>
> I suggest that putting isolcpus_update_mutex into cpuset_full_lock, since this
> function means that all the locks needed have been acquired.
>
> void cpuset_full_lock(void)
> {
> 	mutex_lock(&isolcpus_update_mutex);
> 	cpus_read_lock();
> 	mutex_lock(&cpuset_mutex);
> }
>
> void cpuset_full_unlock(void)
> {
> 	mutex_unlock(&cpuset_mutex);
> 	cpus_read_unlock();
> 	mutex_unlock(&isolcpus_update_mutex);
> }

That is what I had done.

Cheers,
Longman

>
> In the __update_isolation_cpumasks function, we can pair:
>
> ```
> 	...
> 	mutex_unlock(&cpuset_mutex);
> 	cpus_read_unlock();
> 	... Actions
> 	cpus_read_lock();
> 	mutex_lock(&cpuset_mutex);
> 	...
> ```
>

Re: [PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex
Posted by Chen Ridong 1 week, 2 days ago

On 2026/1/30 11:53, Waiman Long wrote:
> On 1/29/26 8:42 PM, Chen Ridong wrote:
>>
>> On 2026/1/30 9:35, Waiman Long wrote:
>>> On 1/29/26 7:56 PM, Chen Ridong wrote:
>>>> On 2026/1/30 5:16, Waiman Long wrote:
>>>>> On 1/29/26 3:01 AM, Chen Ridong wrote:
>>>>>> On 2026/1/28 12:42, Waiman Long wrote:
>>>>>>> The current cpuset partition code is able to dynamically update
>>>>>>> the sched domains of a running system and the corresponding
>>>>>>> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
>>>>>>> "isolcpus=domain,..." boot command line feature at run time.
>>>>>>>
>>>>>>> The housekeeping cpumask update requires flushing a number of different
>>>>>>> workqueues which may not be safe with cpus_read_lock() held as the
>>>>>>> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
>>>>>>> which have locking dependency with cpus_read_lock() down the chain. Below
>>>>>>> is an example of such circular locking problem.
>>>>>>>
>>>>>>>      ======================================================
>>>>>>>      WARNING: possible circular locking dependency detected
>>>>>>>      6.18.0-test+ #2 Tainted: G S
>>>>>>>      ------------------------------------------------------
>>>>>>>      test_cpuset_prs/10971 is trying to acquire lock:
>>>>>>>      ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at:
>>>>>>> touch_wq_lockdep_map+0x7a/0x180
>>>>>>>
>>>>>>>      but task is already holding lock:
>>>>>>>      ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>>>>>> cpuset_partition_write+0x85/0x130
>>>>>>>
>>>>>>>      which lock already depends on the new lock.
>>>>>>>
>>>>>>>      the existing dependency chain (in reverse order) is:
>>>>>>>      -> #4 (cpuset_mutex){+.+.}-{4:4}:
>>>>>>>      -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>>>>>>>      -> #2 (rtnl_mutex){+.+.}-{4:4}:
>>>>>>>      -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>>>>>>>      -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
>>>>>>>
>>>>>>>      Chain exists of:
>>>>>>>        (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
>>>>>>>
>>>>>>>      5 locks held by test_cpuset_prs/10971:
>>>>>>>       #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at:
>>>>>>> ksys_write+0xf9/0x1d0
>>>>>>>       #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at:
>>>>>>> kernfs_fop_write_iter+0x260/0x5f0
>>>>>>>       #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at:
>>>>>>> kernfs_fop_write_iter+0x2b6/0x5f0
>>>>>>>       #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at:
>>>>>>> cpuset_partition_write+0x77/0x130
>>>>>>>       #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>>>>>> cpuset_partition_write+0x85/0x130
>>>>>>>
>>>>>>>      Call Trace:
>>>>>>>       <TASK>
>>>>>>>         :
>>>>>>>       touch_wq_lockdep_map+0x93/0x180
>>>>>>>       __flush_workqueue+0x111/0x10b0
>>>>>>>       housekeeping_update+0x12d/0x2d0
>>>>>>>       update_parent_effective_cpumask+0x595/0x2440
>>>>>>>       update_prstate+0x89d/0xce0
>>>>>>>       cpuset_partition_write+0xc5/0x130
>>>>>>>       cgroup_file_write+0x1a5/0x680
>>>>>>>       kernfs_fop_write_iter+0x3df/0x5f0
>>>>>>>       vfs_write+0x525/0xfd0
>>>>>>>       ksys_write+0xf9/0x1d0
>>>>>>>       do_syscall_64+0x95/0x520
>>>>>>>       entry_SYSCALL_64_after_hwframe+0x76/0x7e
>>>>>>>
>>>>>>> To avoid such a circular locking dependency problem, we have to
>>>>>>> call housekeeping_update() without holding the cpus_read_lock()
>>>>>>> and cpuset_mutex. One way to do that is to introduce a new top level
>>>>>>> isolcpus_update_mutex which will be acquired first if the set of isolated
>>>>>>> CPUs may have to be updated. This new isolcpus_update_mutex will provide
>>>>>>> the need mutual exclusion without the need to hold cpus_read_lock().
>>>>>>>
>>>>>>> As cpus_read_lock() is now no longer held when
>>>>>>> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
>>>>>>> directly.
>>>>>>>
>>>>>>> The lockdep_is_cpuset_held() is also updated to check the new
>>>>>>> isolcpus_update_mutex.
>>>>>>>
>>>>>> I worry about the issue:
>>>>>>
>>>>>> CPU1                CPU2
>>>>>> rmdir
>>>>>> css->ss->css_killed(css);
>>>>>> cpuset_css_killed
>>>>>>                   __update_isolation_cpumasks
>>>>>>                   cpuset_full_unlock
>>>>>> css->flags |= CSS_DYING;
>>>>>> css_clear_dir(css);
>>>>>> ...
>>>>>> // offline and free do not
>>>>>> // get isolcpus_update_mutex
>>>>>> cpuset_css_offline
>>>>>> cpuset_css_free
>>>>>>                   cpuset_full_lock
>>>>>>                   ...
>>>>>>                   // UAF?
>>>>>>
>>>> Hi, Longman,
>>>>
>>>> In this patch, I noticed that cpuset_css_offline and cpuset_css_free do not
>>>> acquire the isolcpus_update_mutex. This could potentially lead to a UAF issue.
>>>>
>>>>> That is the reason why I add a new top-level isolcpus_update_mutex.
>>>>> cpuset_css_killed() and the update_isolation_cpumasks()'s unlock/lock sequence
>>>>> will have to acquire this isolcpus_update_mutex first.
>>>>>
>>>> However, simply adding isolcpus_update_mutex to cpuset_css_killed and
>>>> update_isolation_cpumasks may not be sufficient.
>>>>
>>>> As I mentioned, the path that calls __update_isolation_cpumasks may first
>>>> acquire isolcpus_update_mutex and cpuset_full_lock, but once cpuset_css_killed
>>>> is completed, it will release the “full” lock and then attempt to reacquire it
>>>> later. During this intermediate period, the cpuset may have already been freed,
>>>> because cpuset_css_offline and cpuset_css_free do not currently acquire the
>>>> isolcpus_update_mutex.
>>> You are right that acquisition of the new isolcpus_update_mutex should be in all
>>> the places where cpuset_full_lock() is acquired. Will update the patch to do
>>> that. That should eliminate the risk.
>>>
>> I suggest that putting isolcpus_update_mutex into cpuset_full_lock, since this
>> function means that all the locks needed have been acquired.
>>
>> void cpuset_full_lock(void)
>> {
>>     mutex_lock(&isolcpus_update_mutex);
>>     cpus_read_lock();
>>     mutex_lock(&cpuset_mutex);
>> }
>>
>> void cpuset_full_unlock(void)
>> {
>>     mutex_unlock(&cpuset_mutex);
>>     cpus_read_unlock();
>>     mutex_unlock(&isolcpus_update_mutex);
>> }
> 
> That is what I had done.
> 

Great.

-- 
Best regards,
Ridong

Re: [PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex
Posted by Chen Ridong 1 week, 3 days ago

On 2026/1/29 16:01, Chen Ridong wrote:
> 
> 
> On 2026/1/28 12:42, Waiman Long wrote:
>> The current cpuset partition code is able to dynamically update
>> the sched domains of a running system and the corresponding
>> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
>> "isolcpus=domain,..." boot command line feature at run time.
>>
>> The housekeeping cpumask update requires flushing a number of different
>> workqueues which may not be safe with cpus_read_lock() held as the
>> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
>> which have locking dependency with cpus_read_lock() down the chain. Below
>> is an example of such circular locking problem.
>>
>>   ======================================================
>>   WARNING: possible circular locking dependency detected
>>   6.18.0-test+ #2 Tainted: G S
>>   ------------------------------------------------------
>>   test_cpuset_prs/10971 is trying to acquire lock:
>>   ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at: touch_wq_lockdep_map+0x7a/0x180
>>
>>   but task is already holding lock:
>>   ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130
>>
>>   which lock already depends on the new lock.
>>
>>   the existing dependency chain (in reverse order) is:
>>   -> #4 (cpuset_mutex){+.+.}-{4:4}:
>>   -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>>   -> #2 (rtnl_mutex){+.+.}-{4:4}:
>>   -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>>   -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
>>
>>   Chain exists of:
>>     (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
>>
>>   5 locks held by test_cpuset_prs/10971:
>>    #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
>>    #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at: kernfs_fop_write_iter+0x260/0x5f0
>>    #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x2b6/0x5f0
>>    #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at: cpuset_partition_write+0x77/0x130
>>    #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130
>>
>>   Call Trace:
>>    <TASK>
>>      :
>>    touch_wq_lockdep_map+0x93/0x180
>>    __flush_workqueue+0x111/0x10b0
>>    housekeeping_update+0x12d/0x2d0
>>    update_parent_effective_cpumask+0x595/0x2440
>>    update_prstate+0x89d/0xce0
>>    cpuset_partition_write+0xc5/0x130
>>    cgroup_file_write+0x1a5/0x680
>>    kernfs_fop_write_iter+0x3df/0x5f0
>>    vfs_write+0x525/0xfd0
>>    ksys_write+0xf9/0x1d0
>>    do_syscall_64+0x95/0x520
>>    entry_SYSCALL_64_after_hwframe+0x76/0x7e
>>
>> To avoid such a circular locking dependency problem, we have to
>> call housekeeping_update() without holding the cpus_read_lock()
>> and cpuset_mutex. One way to do that is to introduce a new top level
>> isolcpus_update_mutex which will be acquired first if the set of isolated
>> CPUs may have to be updated. This new isolcpus_update_mutex will provide
>> the need mutual exclusion without the need to hold cpus_read_lock().
>>

When I reviewed Frederic's patches, I concerned about this issue. However, I was
not certain whether any flush worker would need to acquire cpu_hotplug_lock or
cpuset_mutex.

Despite this warning, I do not understand how wq_completion would need to
acquire cpu_hotplug_lock and cpuset_mutex.

The reason I want to understand how wq_completion acquires cpu_hotplug_lock or
cpuset_mutex is to determine whether isolcpus_update_mutex is truly necessary.
As I mentioned in my previous email, I am concerned about a potential
use-after-free (UAF) issue, which might imply that isolcpus_update_mutex is
required in most places that currently acquire cpuset_mutex, with the possible
exception of the hotplug path?

>> As cpus_read_lock() is now no longer held when
>> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
>> directly.
>>
>> The lockdep_is_cpuset_held() is also updated to check the new
>> isolcpus_update_mutex.
>>
> 
> I worry about the issue:
> 
> CPU1				CPU2
> rmdir
> css->ss->css_killed(css);			
> cpuset_css_killed
> 				__update_isolation_cpumasks
> 				cpuset_full_unlock
> css->flags |= CSS_DYING;
> css_clear_dir(css);
> ...
> // offline and free do not
> // get isolcpus_update_mutex
> cpuset_css_offline
> cpuset_css_free
> 				cpuset_full_lock
> 				...
> 				// UAF?
> 
>> Signed-off-by: Waiman Long <longman@redhat.com>
>> ---
>>  kernel/cgroup/cpuset.c        | 79 ++++++++++++++++++++++++-----------
>>  kernel/sched/isolation.c      |  4 +-
>>  kernel/time/timer_migration.c |  3 +-
>>  3 files changed, 57 insertions(+), 29 deletions(-)
>>
>> diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
>> index 98c7cb732206..96390ceb5122 100644
>> --- a/kernel/cgroup/cpuset.c
>> +++ b/kernel/cgroup/cpuset.c
>> @@ -78,7 +78,7 @@ static cpumask_var_t	subpartitions_cpus;
>>  static cpumask_var_t	isolated_cpus;
>>  
>>  /*
>> - * isolated_cpus updating flag (protected by cpuset_mutex)
>> + * isolated_cpus updating flag (protected by isolcpus_update_mutex)
>>   * Set if isolated_cpus is going to be updated in the current
>>   * cpuset_mutex crtical section.
>>   */
>> @@ -223,29 +223,46 @@ struct cpuset top_cpuset = {
>>  };
>>  
>>  /*
>> - * There are two global locks guarding cpuset structures - cpuset_mutex and
>> - * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
>> - * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
>> - * structures. Note that cpuset_mutex needs to be a mutex as it is used in
>> - * paths that rely on priority inheritance (e.g. scheduler - on RT) for
>> - * correctness.
>> + * CPUSET Locking Convention
>> + * -------------------------
>>   *
>> - * A task must hold both locks to modify cpusets.  If a task holds
>> - * cpuset_mutex, it blocks others, ensuring that it is the only task able to
>> - * also acquire callback_lock and be able to modify cpusets.  It can perform
>> - * various checks on the cpuset structure first, knowing nothing will change.
>> - * It can also allocate memory while just holding cpuset_mutex.  While it is
>> - * performing these checks, various callback routines can briefly acquire
>> - * callback_lock to query cpusets.  Once it is ready to make the changes, it
>> - * takes callback_lock, blocking everyone else.
>> + * Below are the three global locks guarding cpuset structures in lock
>> + * acquisition order:
>> + *  - isolcpus_update_mutex (optional)
>> + *  - cpu_hotplug_lock (cpus_read_lock/cpus_write_lock)
>> + *  - cpuset_mutex
>> + *  - callback_lock (raw spinlock)
>>   *
>> - * Calls to the kernel memory allocator can not be made while holding
>> - * callback_lock, as that would risk double tripping on callback_lock
>> - * from one of the callbacks into the cpuset code from within
>> - * __alloc_pages().
>> + * The first isolcpus_update_mutex should only be held if the existing set of
>> + * isolated CPUs (in isolated partition) or any of the partition states may be
>> + * changed when some cpuset control files are being written into. Otherwise,
>> + * it can be skipped. Holding isolcpus_update_mutex/cpus_read_lock or
>> + * cpus_write_lock will ensure mutual exclusion of isolated_cpus update.
>>   *
>> - * If a task is only holding callback_lock, then it has read-only
>> - * access to cpusets.
>> + * As cpuset will now indirectly flush a number of different workqueues in
>> + * housekeeping_update() when the set of isolated CPUs is going to be changed,
>> + * it may not be safe from the circular locking perspective to hold the
>> + * cpus_read_lock. So cpuset_full_lock() will be released before calling
>> + * housekeeping_update() and re-acquired afterward.
>> + *
>> + * A task must hold all the remaining three locks to modify externally visible
>> + * or used fields of cpusets, though some of the internally used cpuset fields
>> + * can be modified by holding cpu_hotplug_lock and cpuset_mutex only. If only
>> + * reliable read access of the externally used fields are needed, a task can
>> + * hold either cpuset_mutex or callback_lock.
>> + *
>> + * If a task holds cpu_hotplug_lock and cpuset_mutex, it blocks others,
>> + * ensuring that it is the only task able to also acquire callback_lock and
>> + * be able to modify cpusets.  It can perform various checks on the cpuset
>> + * structure first, knowing nothing will change. It can also allocate memory
>> + * without holding callback_lock. While it is performing these checks, various
>> + * callback routines can briefly acquire callback_lock to query cpusets.  Once
>> + * it is ready to make the changes, it takes callback_lock, blocking everyone
>> + * else.
>> + *
>> + * Calls to the kernel memory allocator cannot be made while holding
>> + * callback_lock which is a spinlock, as the memory allocator may sleep or
>> + * call back into cpuset code and acquire callback_lock.
>>   *
>>   * Now, the task_struct fields mems_allowed and mempolicy may be changed
>>   * by other task, we use alloc_lock in the task_struct fields to protect
>> @@ -256,6 +273,7 @@ struct cpuset top_cpuset = {
>>   * cpumasks and nodemasks.
>>   */
>>  
>> +static DEFINE_MUTEX(isolcpus_update_mutex);
>>  static DEFINE_MUTEX(cpuset_mutex);
>>  
>>  /**
>> @@ -302,7 +320,7 @@ void cpuset_full_unlock(void)
>>  #ifdef CONFIG_LOCKDEP
>>  bool lockdep_is_cpuset_held(void)
>>  {
>> -	return lockdep_is_held(&cpuset_mutex);
>> +	return lockdep_is_held(&isolcpus_update_mutex);
>>  }
>>  #endif
>>  
>> @@ -1294,9 +1312,8 @@ static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
>>  static void __update_isolation_cpumasks(bool twork);
>>  static void isolation_task_work_fn(struct callback_head *cb)
>>  {
>> -	cpuset_full_lock();
>> +	guard(mutex)(&isolcpus_update_mutex);
>>  	__update_isolation_cpumasks(true);
>> -	cpuset_full_lock();
>>  }
>>  
>>  /*
>> @@ -1338,8 +1355,18 @@ static void __update_isolation_cpumasks(bool twork)
>>  		return;
>>  	}
>>  
>> +	lockdep_assert_held(&isolcpus_update_mutex);
>> +	/*
>> +	 * Release cpus_read_lock & cpuset_mutex before calling
>> +	 * housekeeping_update() and re-acquiring them afterward if not
>> +	 * calling from task_work.
>> +	 */
>> +	if (!twork)
>> +		cpuset_full_unlock();
>>  	ret = housekeeping_update(isolated_cpus);
>>  	WARN_ON_ONCE(ret < 0);
>> +	if (!twork)
>> +		cpuset_full_lock();
>>  
>>  	isolated_cpus_updating = false;
>>  }
>> @@ -3196,6 +3223,7 @@ ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
>>  		return -EACCES;
>>  
>>  	buf = strstrip(buf);
>> +	mutex_lock(&isolcpus_update_mutex);
>>  	cpuset_full_lock();
>>  	if (!is_cpuset_online(cs))
>>  		goto out_unlock;
>> @@ -3226,6 +3254,7 @@ ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
>>  		rebuild_sched_domains_locked();
>>  out_unlock:
>>  	cpuset_full_unlock();
>> +	mutex_unlock(&isolcpus_update_mutex);
>>  	if (of_cft(of)->private == FILE_MEMLIST)
>>  		schedule_flush_migrate_mm();
>>  	return retval ?: nbytes;
>> @@ -3329,6 +3358,7 @@ static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
>>  	else
>>  		return -EINVAL;
>>  
>> +	guard(mutex)(&isolcpus_update_mutex);
>>  	cpuset_full_lock();
>>  	if (is_cpuset_online(cs))
>>  		retval = update_prstate(cs, val);
>> @@ -3502,6 +3532,7 @@ static void cpuset_css_killed(struct cgroup_subsys_state *css)
>>  {
>>  	struct cpuset *cs = css_cs(css);
>>  
>> +	guard(mutex)(&isolcpus_update_mutex);
>>  	cpuset_full_lock();
>>  	/* Reset valid partition back to member */
>>  	if (is_partition_valid(cs))
>> diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
>> index 3b725d39c06e..ef152d401fe2 100644
>> --- a/kernel/sched/isolation.c
>> +++ b/kernel/sched/isolation.c
>> @@ -123,8 +123,6 @@ int housekeeping_update(struct cpumask *isol_mask)
>>  	struct cpumask *trial, *old = NULL;
>>  	int err;
>>  
>> -	lockdep_assert_cpus_held();
>> -
>>  	trial = kmalloc(cpumask_size(), GFP_KERNEL);
>>  	if (!trial)
>>  		return -ENOMEM;
>> @@ -136,7 +134,7 @@ int housekeeping_update(struct cpumask *isol_mask)
>>  	}
>>  
>>  	if (!housekeeping.flags)
>> -		static_branch_enable_cpuslocked(&housekeeping_overridden);
>> +		static_branch_enable(&housekeeping_overridden);
>>  
>>  	if (housekeeping.flags & HK_FLAG_DOMAIN)
>>  		old = housekeeping_cpumask_dereference(HK_TYPE_DOMAIN);
>> diff --git a/kernel/time/timer_migration.c b/kernel/time/timer_migration.c
>> index 6da9cd562b20..244a8d025e78 100644
>> --- a/kernel/time/timer_migration.c
>> +++ b/kernel/time/timer_migration.c
>> @@ -1559,8 +1559,6 @@ int tmigr_isolated_exclude_cpumask(struct cpumask *exclude_cpumask)
>>  	cpumask_var_t cpumask __free(free_cpumask_var) = CPUMASK_VAR_NULL;
>>  	int cpu;
>>  
>> -	lockdep_assert_cpus_held();
>> -
>>  	if (!works)
>>  		return -ENOMEM;
>>  	if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
>> @@ -1570,6 +1568,7 @@ int tmigr_isolated_exclude_cpumask(struct cpumask *exclude_cpumask)
>>  	 * First set previously isolated CPUs as available (unisolate).
>>  	 * This cpumask contains only CPUs that switched to available now.
>>  	 */
>> +	guard(cpus_read_lock)();
>>  	cpumask_andnot(cpumask, cpu_online_mask, exclude_cpumask);
>>  	cpumask_andnot(cpumask, cpumask, tmigr_available_cpumask);
>>  
> 

-- 
Best regards,
Ridong
Re: [PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex
Posted by Waiman Long 1 week, 2 days ago
On 1/29/26 3:20 AM, Chen Ridong wrote:
>
> On 2026/1/29 16:01, Chen Ridong wrote:
>>
>> On 2026/1/28 12:42, Waiman Long wrote:
>>> The current cpuset partition code is able to dynamically update
>>> the sched domains of a running system and the corresponding
>>> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
>>> "isolcpus=domain,..." boot command line feature at run time.
>>>
>>> The housekeeping cpumask update requires flushing a number of different
>>> workqueues which may not be safe with cpus_read_lock() held as the
>>> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
>>> which have locking dependency with cpus_read_lock() down the chain. Below
>>> is an example of such circular locking problem.
>>>
>>>    ======================================================
>>>    WARNING: possible circular locking dependency detected
>>>    6.18.0-test+ #2 Tainted: G S
>>>    ------------------------------------------------------
>>>    test_cpuset_prs/10971 is trying to acquire lock:
>>>    ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at: touch_wq_lockdep_map+0x7a/0x180
>>>
>>>    but task is already holding lock:
>>>    ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130
>>>
>>>    which lock already depends on the new lock.
>>>
>>>    the existing dependency chain (in reverse order) is:
>>>    -> #4 (cpuset_mutex){+.+.}-{4:4}:
>>>    -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>>>    -> #2 (rtnl_mutex){+.+.}-{4:4}:
>>>    -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>>>    -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
>>>
>>>    Chain exists of:
>>>      (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
>>>
>>>    5 locks held by test_cpuset_prs/10971:
>>>     #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
>>>     #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at: kernfs_fop_write_iter+0x260/0x5f0
>>>     #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x2b6/0x5f0
>>>     #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at: cpuset_partition_write+0x77/0x130
>>>     #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130
>>>
>>>    Call Trace:
>>>     <TASK>
>>>       :
>>>     touch_wq_lockdep_map+0x93/0x180
>>>     __flush_workqueue+0x111/0x10b0
>>>     housekeeping_update+0x12d/0x2d0
>>>     update_parent_effective_cpumask+0x595/0x2440
>>>     update_prstate+0x89d/0xce0
>>>     cpuset_partition_write+0xc5/0x130
>>>     cgroup_file_write+0x1a5/0x680
>>>     kernfs_fop_write_iter+0x3df/0x5f0
>>>     vfs_write+0x525/0xfd0
>>>     ksys_write+0xf9/0x1d0
>>>     do_syscall_64+0x95/0x520
>>>     entry_SYSCALL_64_after_hwframe+0x76/0x7e
>>>
>>> To avoid such a circular locking dependency problem, we have to
>>> call housekeeping_update() without holding the cpus_read_lock()
>>> and cpuset_mutex. One way to do that is to introduce a new top level
>>> isolcpus_update_mutex which will be acquired first if the set of isolated
>>> CPUs may have to be updated. This new isolcpus_update_mutex will provide
>>> the need mutual exclusion without the need to hold cpus_read_lock().
>>>
> When I reviewed Frederic's patches, I concerned about this issue. However, I was
> not certain whether any flush worker would need to acquire cpu_hotplug_lock or
> cpuset_mutex.
>
> Despite this warning, I do not understand how wq_completion would need to
> acquire cpu_hotplug_lock and cpuset_mutex.
>
> The reason I want to understand how wq_completion acquires cpu_hotplug_lock or
> cpuset_mutex is to determine whether isolcpus_update_mutex is truly necessary.
> As I mentioned in my previous email, I am concerned about a potential
> use-after-free (UAF) issue, which might imply that isolcpus_update_mutex is
> required in most places that currently acquire cpuset_mutex, with the possible
> exception of the hotplug path?

A circular lock dependency can invoke more than 2 tasks/parties. In this 
case, the task that hold wq_completion does not need to acquire 
cpu_hotplug_lock. If a worker that flushes a work function required for 
the completion to finish and it happens to acquire cpu_hotplug_lock with 
another task trying to acquire cpus_write_lock in the interim, the 
worker will wait there for the write lock to be released which will not 
happen until the original task that calls flush_workqueue() release its 
read lock. In essence, it is a deadlock.

Cheers,
Longman
Re: [PATCH/for-next 2/2] cgroup/cpuset: Introduce a new top level isolcpus_update_mutex
Posted by Chen Ridong 1 week, 2 days ago

On 2026/1/30 4:57, Waiman Long wrote:
> On 1/29/26 3:20 AM, Chen Ridong wrote:
>>
>> On 2026/1/29 16:01, Chen Ridong wrote:
>>>
>>> On 2026/1/28 12:42, Waiman Long wrote:
>>>> The current cpuset partition code is able to dynamically update
>>>> the sched domains of a running system and the corresponding
>>>> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
>>>> "isolcpus=domain,..." boot command line feature at run time.
>>>>
>>>> The housekeeping cpumask update requires flushing a number of different
>>>> workqueues which may not be safe with cpus_read_lock() held as the
>>>> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
>>>> which have locking dependency with cpus_read_lock() down the chain. Below
>>>> is an example of such circular locking problem.
>>>>
>>>>    ======================================================
>>>>    WARNING: possible circular locking dependency detected
>>>>    6.18.0-test+ #2 Tainted: G S
>>>>    ------------------------------------------------------
>>>>    test_cpuset_prs/10971 is trying to acquire lock:
>>>>    ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at:
>>>> touch_wq_lockdep_map+0x7a/0x180
>>>>
>>>>    but task is already holding lock:
>>>>    ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>>> cpuset_partition_write+0x85/0x130
>>>>
>>>>    which lock already depends on the new lock.
>>>>
>>>>    the existing dependency chain (in reverse order) is:
>>>>    -> #4 (cpuset_mutex){+.+.}-{4:4}:
>>>>    -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>>>>    -> #2 (rtnl_mutex){+.+.}-{4:4}:
>>>>    -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>>>>    -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
>>>>
>>>>    Chain exists of:
>>>>      (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
>>>>
>>>>    5 locks held by test_cpuset_prs/10971:
>>>>     #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
>>>>     #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at:
>>>> kernfs_fop_write_iter+0x260/0x5f0
>>>>     #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at:
>>>> kernfs_fop_write_iter+0x2b6/0x5f0
>>>>     #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at:
>>>> cpuset_partition_write+0x77/0x130
>>>>     #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
>>>> cpuset_partition_write+0x85/0x130
>>>>
>>>>    Call Trace:
>>>>     <TASK>
>>>>       :
>>>>     touch_wq_lockdep_map+0x93/0x180
>>>>     __flush_workqueue+0x111/0x10b0
>>>>     housekeeping_update+0x12d/0x2d0
>>>>     update_parent_effective_cpumask+0x595/0x2440
>>>>     update_prstate+0x89d/0xce0
>>>>     cpuset_partition_write+0xc5/0x130
>>>>     cgroup_file_write+0x1a5/0x680
>>>>     kernfs_fop_write_iter+0x3df/0x5f0
>>>>     vfs_write+0x525/0xfd0
>>>>     ksys_write+0xf9/0x1d0
>>>>     do_syscall_64+0x95/0x520
>>>>     entry_SYSCALL_64_after_hwframe+0x76/0x7e
>>>>
>>>> To avoid such a circular locking dependency problem, we have to
>>>> call housekeeping_update() without holding the cpus_read_lock()
>>>> and cpuset_mutex. One way to do that is to introduce a new top level
>>>> isolcpus_update_mutex which will be acquired first if the set of isolated
>>>> CPUs may have to be updated. This new isolcpus_update_mutex will provide
>>>> the need mutual exclusion without the need to hold cpus_read_lock().
>>>>
>> When I reviewed Frederic's patches, I concerned about this issue. However, I was
>> not certain whether any flush worker would need to acquire cpu_hotplug_lock or
>> cpuset_mutex.
>>
>> Despite this warning, I do not understand how wq_completion would need to
>> acquire cpu_hotplug_lock and cpuset_mutex.
>>
>> The reason I want to understand how wq_completion acquires cpu_hotplug_lock or
>> cpuset_mutex is to determine whether isolcpus_update_mutex is truly necessary.
>> As I mentioned in my previous email, I am concerned about a potential
>> use-after-free (UAF) issue, which might imply that isolcpus_update_mutex is
>> required in most places that currently acquire cpuset_mutex, with the possible
>> exception of the hotplug path?
> 
> A circular lock dependency can invoke more than 2 tasks/parties. In this case,
> the task that hold wq_completion does not need to acquire cpu_hotplug_lock. If a
> worker that flushes a work function required for the completion to finish and it
> happens to acquire cpu_hotplug_lock with another task trying to acquire
> cpus_write_lock in the interim, the worker will wait there for the write lock to
> be released which will not happen until the original task that calls
> flush_workqueue() release its read lock. In essence, it is a deadlock.
> 

Thanks, Longman,

I looked through the relevant workers:

	pci_probe_flush_workqueue()
	mem_cgroup_flush_workqueue()
	vmstat_flush_workqueue()

However, I still haven’t found any worker function that actually acquires
cpu_hotplug_lock or cpuset_mutex. Perhaps I missed something.

-- 
Best regards,
Ridong