Allow SoC drivers in Rust to present metadata about their devices to
userspace through /sys/devices/socX and other drivers to identify their
properties through `soc_device_match`.
Signed-off-by: Matthew Maurer <mmaurer@google.com>
---
MAINTAINERS | 1 +
rust/bindings/bindings_helper.h | 1 +
rust/kernel/lib.rs | 2 +
rust/kernel/soc.rs | 145 ++++++++++++++++++++++++++++++++++++++++
4 files changed, 149 insertions(+)
diff --git a/MAINTAINERS b/MAINTAINERS
index c5a7cda26c600e49c7ab0d547306d3281333f672..4ff01fb0f1bda27002094113c0bf9d074d28fdb6 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -7700,6 +7700,7 @@ F: rust/kernel/devres.rs
F: rust/kernel/driver.rs
F: rust/kernel/faux.rs
F: rust/kernel/platform.rs
+F: rust/kernel/soc.rs
F: samples/rust/rust_debugfs.rs
F: samples/rust/rust_debugfs_scoped.rs
F: samples/rust/rust_driver_platform.rs
diff --git a/rust/bindings/bindings_helper.h b/rust/bindings/bindings_helper.h
index a067038b4b422b4256f4a2b75fe644d47e6e82c8..9fdf76ca630e00715503e2a3a809bedc895697fd 100644
--- a/rust/bindings/bindings_helper.h
+++ b/rust/bindings/bindings_helper.h
@@ -80,6 +80,7 @@
#include <linux/sched.h>
#include <linux/security.h>
#include <linux/slab.h>
+#include <linux/sys_soc.h>
#include <linux/task_work.h>
#include <linux/tracepoint.h>
#include <linux/usb.h>
diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
index f812cf12004286962985a068665443dc22c389a2..6d637e2fed1b605e2dfc2e7b2247179439a90ba9 100644
--- a/rust/kernel/lib.rs
+++ b/rust/kernel/lib.rs
@@ -138,6 +138,8 @@
pub mod seq_file;
pub mod sizes;
pub mod slice;
+#[cfg(CONFIG_SOC_BUS)]
+pub mod soc;
mod static_assert;
#[doc(hidden)]
pub mod std_vendor;
diff --git a/rust/kernel/soc.rs b/rust/kernel/soc.rs
new file mode 100644
index 0000000000000000000000000000000000000000..fb9e461218787b5546805c0f04fadbc5e3e054a6
--- /dev/null
+++ b/rust/kernel/soc.rs
@@ -0,0 +1,145 @@
+// SPDX-License-Identifier: GPL-2.0
+
+// Copyright (C) 2025 Google LLC.
+
+//! SoC Driver Abstraction.
+//!
+//! C header: [`include/linux/sys_soc.h`](srctree/include/linux/sys_soc.h)
+
+use crate::{
+ bindings,
+ error,
+ prelude::*,
+ str::CString,
+ types::Opaque, //
+};
+use core::ptr::NonNull;
+
+/// Attributes for a SoC device.
+///
+/// These are both exported to userspace under /sys/devices/socX and provided to other drivers to
+/// match against via `soc_device_match` (not yet available in Rust) to enable quirks or
+/// device-specific support where necessary.
+///
+/// All fields are freeform - they have no specific formatting, just defined meanings.
+/// For example, the [`machine`](`Attributes::machine`) field could be "DB8500" or
+/// "Qualcomm Technologies, Inc. SM8560 HDK", but regardless it should identify a board or product.
+pub struct Attributes {
+ /// Should generally be a board ID or product ID. Examples
+ /// include DB8500 (ST-Ericsson) or "Qualcomm Technologies, inc. SM8560 HDK".
+ ///
+ /// If this field is not populated, the SoC infrastructure will try to populate it from
+ /// `/model` in the device tree.
+ pub machine: Option<CString>,
+ /// The broader class this SoC belongs to. Examples include ux500
+ /// (for DB8500) or Snapdragon (for SM8650).
+ ///
+ /// On chips with ARM firmware supporting SMCCC v1.2+, this may be a JEDEC JEP106 manufacturer
+ /// identification.
+ pub family: Option<CString>,
+ /// The manufacturing revision of the part. Frequently this is MAJOR.MINOR, but not always.
+ pub revision: Option<CString>,
+ /// Serial Number - uniquely identifies a specific SoC. If present, should be unique (buying a
+ /// replacement part should change it if present). This field cannot be matched on and is
+ /// solely present to export through /sys.
+ pub serial_number: Option<CString>,
+ /// SoC ID - identifies a specific SoC kind in question, sometimes more specifically than
+ /// `machine` if the same SoC is used in multiple products. Some devices use this to specify a
+ /// SoC name, e.g. "I.MX??", and others just print an ID number (e.g. Tegra and Qualcomm).
+ ///
+ /// On chips with ARM firmware supporting SMCCC v1.2+, this may be a JEDEC JEP106 manufacturer
+ /// identification (the family value) followed by a colon and then a 4-digit ID value.
+ pub soc_id: Option<CString>,
+}
+
+struct BuiltAttributes {
+ // While `inner` has pointers to `_backing`, it is to the interior of the `CStrings`, not
+ // `backing` itself, so it does not need to be pinned.
+ _backing: Attributes,
+ // `Opaque` makes us `!Unpin`, as the registration holds a pointer to `inner` when used.
+ inner: Opaque<bindings::soc_device_attribute>,
+}
+
+fn cstring_to_c(mcs: &Option<CString>) -> *const kernel::ffi::c_char {
+ mcs.as_ref()
+ .map(|cs| cs.as_char_ptr())
+ .unwrap_or(core::ptr::null())
+}
+
+impl BuiltAttributes {
+ fn as_mut_ptr(&self) -> *mut bindings::soc_device_attribute {
+ self.inner.get()
+ }
+}
+
+impl Attributes {
+ fn build(self) -> BuiltAttributes {
+ BuiltAttributes {
+ inner: Opaque::new(bindings::soc_device_attribute {
+ machine: cstring_to_c(&self.machine),
+ family: cstring_to_c(&self.family),
+ revision: cstring_to_c(&self.revision),
+ serial_number: cstring_to_c(&self.serial_number),
+ soc_id: cstring_to_c(&self.soc_id),
+ data: core::ptr::null(),
+ custom_attr_group: core::ptr::null(),
+ }),
+ _backing: self,
+ }
+ }
+}
+
+/// # Safety
+/// If a device is returned (e.g. no error), `attr` must remain valid for reads until the
+/// returned pointer is released through `soc_device_unregister`.
+unsafe fn register_device(attr: Pin<&BuiltAttributes>) -> Result<NonNull<bindings::soc_device>> {
+ let raw_soc =
+ // SAFETY:
+ // * The struct provided through attr is backed by pinned data next to it, so as
+ // long as attr lives, the strings pointed to by the struct will too.
+ // * `attr` is pinned, so the pinned data won't move.
+ // * If it returns a device, and so others may try to read this data, by caller
+ // invariant, `attr` won't be released until the device is.
+ error::from_err_ptr(unsafe { bindings::soc_device_register(attr.as_mut_ptr()) })?;
+ // `soc_device_register` should not return NULL, but it doesn't hurt to be paranoid.
+ NonNull::new(raw_soc).ok_or(EINVAL)
+}
+
+#[pin_data(PinnedDrop)]
+/// Registration handle for your soc_dev. If you let it go out of scope, your soc_dev will be
+/// unregistered.
+pub struct Registration {
+ #[pin]
+ attr: BuiltAttributes,
+ soc_dev: NonNull<bindings::soc_device>,
+}
+
+// SAFETY: We provide no operations through `&Registration`.
+unsafe impl Sync for Registration {}
+
+// SAFETY: All pointers are normal allocations, not thread-specific.
+unsafe impl Send for Registration {}
+
+#[pinned_drop]
+impl PinnedDrop for Registration {
+ fn drop(self: Pin<&mut Self>) {
+ // SAFETY: Device always contains a live pointer to a soc_device that can be unregistered
+ unsafe { bindings::soc_device_unregister(self.soc_dev.as_ptr()) }
+ }
+}
+
+impl Registration {
+ /// Register a new SoC device
+ pub fn register(attr: Attributes) -> impl PinInit<Self, Error> {
+ try_pin_init!(&this in Self {
+ attr: attr.build(),
+ // SAFETY: We have already initialized attr, and we are inside PinInit and Self
+ // is !Unpin, so attr won't be moved and is valid. If it returns success, attr
+ // will not be dropped until after our `PinnedDrop` implementation runs, so the
+ // device will be unregistered first.
+ soc_dev: unsafe {
+ register_device(Pin::new_unchecked(&(*this.as_ptr()).attr))?
+ },
+ }? Error)
+ }
+}
--
2.52.0.305.g3fc767764a-goog
On Tue Dec 16, 2025 at 1:43 AM CET, Matthew Maurer wrote:
> +/// Attributes for a SoC device.
> +///
> +/// These are both exported to userspace under /sys/devices/socX and provided to other drivers to
> +/// match against via `soc_device_match` (not yet available in Rust) to enable quirks or
> +/// device-specific support where necessary.
> +///
> +/// All fields are freeform - they have no specific formatting, just defined meanings.
> +/// For example, the [`machine`](`Attributes::machine`) field could be "DB8500" or
> +/// "Qualcomm Technologies, Inc. SM8560 HDK", but regardless it should identify a board or product.
> +pub struct Attributes {
> + /// Should generally be a board ID or product ID. Examples
> + /// include DB8500 (ST-Ericsson) or "Qualcomm Technologies, inc. SM8560 HDK".
> + ///
> + /// If this field is not populated, the SoC infrastructure will try to populate it from
> + /// `/model` in the device tree.
> + pub machine: Option<CString>,
> + /// The broader class this SoC belongs to. Examples include ux500
> + /// (for DB8500) or Snapdragon (for SM8650).
> + ///
> + /// On chips with ARM firmware supporting SMCCC v1.2+, this may be a JEDEC JEP106 manufacturer
> + /// identification.
> + pub family: Option<CString>,
> + /// The manufacturing revision of the part. Frequently this is MAJOR.MINOR, but not always.
> + pub revision: Option<CString>,
> + /// Serial Number - uniquely identifies a specific SoC. If present, should be unique (buying a
> + /// replacement part should change it if present). This field cannot be matched on and is
> + /// solely present to export through /sys.
> + pub serial_number: Option<CString>,
> + /// SoC ID - identifies a specific SoC kind in question, sometimes more specifically than
> + /// `machine` if the same SoC is used in multiple products. Some devices use this to specify a
> + /// SoC name, e.g. "I.MX??", and others just print an ID number (e.g. Tegra and Qualcomm).
> + ///
> + /// On chips with ARM firmware supporting SMCCC v1.2+, this may be a JEDEC JEP106 manufacturer
> + /// identification (the family value) followed by a colon and then a 4-digit ID value.
> + pub soc_id: Option<CString>,
> +}
Thanks for expanding the documentation!
> +struct BuiltAttributes {
> + // While `inner` has pointers to `_backing`, it is to the interior of the `CStrings`, not
> + // `backing` itself, so it does not need to be pinned.
> + _backing: Attributes,
> + // `Opaque` makes us `!Unpin`, as the registration holds a pointer to `inner` when used.
> + inner: Opaque<bindings::soc_device_attribute>,
> +}
> +
> +fn cstring_to_c(mcs: &Option<CString>) -> *const kernel::ffi::c_char {
> + mcs.as_ref()
> + .map(|cs| cs.as_char_ptr())
> + .unwrap_or(core::ptr::null())
> +}
> +
> +impl BuiltAttributes {
> + fn as_mut_ptr(&self) -> *mut bindings::soc_device_attribute {
> + self.inner.get()
> + }
> +}
> +
> +impl Attributes {
> + fn build(self) -> BuiltAttributes {
> + BuiltAttributes {
> + inner: Opaque::new(bindings::soc_device_attribute {
> + machine: cstring_to_c(&self.machine),
> + family: cstring_to_c(&self.family),
> + revision: cstring_to_c(&self.revision),
> + serial_number: cstring_to_c(&self.serial_number),
> + soc_id: cstring_to_c(&self.soc_id),
> + data: core::ptr::null(),
> + custom_attr_group: core::ptr::null(),
> + }),
> + _backing: self,
> + }
> + }
> +}
> +
> +/// # Safety
> +/// If a device is returned (e.g. no error), `attr` must remain valid for reads until the
> +/// returned pointer is released through `soc_device_unregister`.
> +unsafe fn register_device(attr: Pin<&BuiltAttributes>) -> Result<NonNull<bindings::soc_device>> {
> + let raw_soc =
> + // SAFETY:
> + // * The struct provided through attr is backed by pinned data next to it, so as
> + // long as attr lives, the strings pointed to by the struct will too.
> + // * `attr` is pinned, so the pinned data won't move.
> + // * If it returns a device, and so others may try to read this data, by caller
> + // invariant, `attr` won't be released until the device is.
> + error::from_err_ptr(unsafe { bindings::soc_device_register(attr.as_mut_ptr()) })?;
> + // `soc_device_register` should not return NULL, but it doesn't hurt to be paranoid.
> + NonNull::new(raw_soc).ok_or(EINVAL)
> +}
I think it turns out cleaner without this helper function, inlining the
contained code directly into Registration::new().
> +#[pin_data(PinnedDrop)]
> +/// Registration handle for your soc_dev. If you let it go out of scope, your soc_dev will be
> +/// unregistered.
> +pub struct Registration {
> + #[pin]
> + attr: BuiltAttributes,
> + soc_dev: NonNull<bindings::soc_device>,
> +}
> +
> +// SAFETY: We provide no operations through `&Registration`.
> +unsafe impl Sync for Registration {}
> +
> +// SAFETY: All pointers are normal allocations, not thread-specific.
> +unsafe impl Send for Registration {}
> +
> +#[pinned_drop]
> +impl PinnedDrop for Registration {
> + fn drop(self: Pin<&mut Self>) {
> + // SAFETY: Device always contains a live pointer to a soc_device that can be unregistered
> + unsafe { bindings::soc_device_unregister(self.soc_dev.as_ptr()) }
> + }
> +}
> +
> +impl Registration {
> + /// Register a new SoC device
> + pub fn register(attr: Attributes) -> impl PinInit<Self, Error> {
Let's just call this Registration::new() please. We usually use new() if we
return a Registration object (or an initializer as in this case) and register()
if we do not return a Registration object, but rather automatically clean up the
registration silently, e.g. through devres.
> + try_pin_init!(&this in Self {
You should be able to just access Self::attr directly, i.e. no need for &this.
(When you access attr within the code block of soc_dev it will be Self::attr and
not the attr from the function argument.)
Please find a diff [1] below.
> + attr: attr.build(),
> + // SAFETY: We have already initialized attr, and we are inside PinInit and Self
> + // is !Unpin, so attr won't be moved and is valid. If it returns success, attr
> + // will not be dropped until after our `PinnedDrop` implementation runs, so the
> + // device will be unregistered first.
> + soc_dev: unsafe {
> + register_device(Pin::new_unchecked(&(*this.as_ptr()).attr))?
> + },
> + }? Error)
> + }
> +}
[1]
diff --git a/rust/kernel/soc.rs b/rust/kernel/soc.rs
index fb9e46121878..242dcd09e7f5 100644
--- a/rust/kernel/soc.rs
+++ b/rust/kernel/soc.rs
@@ -89,22 +89,6 @@ fn build(self) -> BuiltAttributes {
}
}
-/// # Safety
-/// If a device is returned (e.g. no error), `attr` must remain valid for reads until the
-/// returned pointer is released through `soc_device_unregister`.
-unsafe fn register_device(attr: Pin<&BuiltAttributes>) -> Result<NonNull<bindings::soc_device>> {
- let raw_soc =
- // SAFETY:
- // * The struct provided through attr is backed by pinned data next to it, so as
- // long as attr lives, the strings pointed to by the struct will too.
- // * `attr` is pinned, so the pinned data won't move.
- // * If it returns a device, and so others may try to read this data, by caller
- // invariant, `attr` won't be released until the device is.
- error::from_err_ptr(unsafe { bindings::soc_device_register(attr.as_mut_ptr()) })?;
- // `soc_device_register` should not return NULL, but it doesn't hurt to be paranoid.
- NonNull::new(raw_soc).ok_or(EINVAL)
-}
-
#[pin_data(PinnedDrop)]
/// Registration handle for your soc_dev. If you let it go out of scope, your soc_dev will be
/// unregistered.
@@ -131,14 +115,24 @@ fn drop(self: Pin<&mut Self>) {
impl Registration {
/// Register a new SoC device
pub fn register(attr: Attributes) -> impl PinInit<Self, Error> {
- try_pin_init!(&this in Self {
+ try_pin_init!(Self {
attr: attr.build(),
// SAFETY: We have already initialized attr, and we are inside PinInit and Self
// is !Unpin, so attr won't be moved and is valid. If it returns success, attr
// will not be dropped until after our `PinnedDrop` implementation runs, so the
// device will be unregistered first.
- soc_dev: unsafe {
- register_device(Pin::new_unchecked(&(*this.as_ptr()).attr))?
+ soc_dev: {
+ // SAFETY:
+ // * The struct provided through attr is backed by pinned data next to it,
+ // so as long as attr lives, the strings pointed to by the struct will too.
+ // * `attr` is pinned, so the pinned data won't move.
+ // * If it returns a device, and so others may try to read this data, by
+ // caller invariant, `attr` won't be released until the device is.
+ let raw_soc = error::from_err_ptr(unsafe {
+ bindings::soc_device_register(attr.as_mut_ptr())
+ })?;
+
+ NonNull::new(raw_soc).ok_or(EINVAL)?
},
}? Error)
}
© 2016 - 2025 Red Hat, Inc.