gcc generates horrid code for both ((u64)u32_a * u32_b) and (u64_a + u32_b).
As well as the extra instructions it can generate a lot of spills to stack
(including spills of constant zeros and even multiplies by constant zero).
mul_u32_u32() already exists to optimise the multiply.
Add a similar add_u64_32() for the addition.
Disable both for clang - it generates better code without them.
Move the 64x64 => 128 multiply into a static inline helper function
for code clarity.
No need for the a/b_hi/lo variables, the implicit casts on the function
calls do the work for us.
Should have minimal effect on the generated code.
Use mul_u32_u32() and add_u64_u32() in the 64x64 => 128 multiply
in mul_u64_add_u64_div_u64().
Signed-off-by: David Laight <david.laight.linux@gmail.com>
Reviewed-by: Nicolas Pitre <npitre@baylibre.com>
---
Changes for v4:
- merge in patch 8.
- Add comments about gcc being 'broken' for mixed 32/64 bit maths.
clang doesn't have the same issues.
- Use a #define for define mul_add() to avoid 'defined but not used'
errors.
arch/x86/include/asm/div64.h | 19 +++++++++++++++++
include/linux/math64.h | 11 ++++++++++
lib/math/div64.c | 40 +++++++++++++++++++++++-------------
3 files changed, 56 insertions(+), 14 deletions(-)
diff --git a/arch/x86/include/asm/div64.h b/arch/x86/include/asm/div64.h
index 6d8a3de3f43a..30fd06ede751 100644
--- a/arch/x86/include/asm/div64.h
+++ b/arch/x86/include/asm/div64.h
@@ -60,6 +60,12 @@ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
}
#define div_u64_rem div_u64_rem
+/*
+ * gcc tends to zero extend 32bit values and do full 64bit maths.
+ * Define asm functions that avoid this.
+ * (clang generates better code for the C versions.)
+ */
+#ifndef __clang__
static inline u64 mul_u32_u32(u32 a, u32 b)
{
u32 high, low;
@@ -71,6 +77,19 @@ static inline u64 mul_u32_u32(u32 a, u32 b)
}
#define mul_u32_u32 mul_u32_u32
+static inline u64 add_u64_u32(u64 a, u32 b)
+{
+ u32 high = a >> 32, low = a;
+
+ asm ("addl %[b], %[low]; adcl $0, %[high]"
+ : [low] "+r" (low), [high] "+r" (high)
+ : [b] "rm" (b) );
+
+ return low | (u64)high << 32;
+}
+#define add_u64_u32 add_u64_u32
+#endif
+
/*
* __div64_32() is never called on x86, so prevent the
* generic definition from getting built.
diff --git a/include/linux/math64.h b/include/linux/math64.h
index e889d850b7f1..cc305206d89f 100644
--- a/include/linux/math64.h
+++ b/include/linux/math64.h
@@ -158,6 +158,17 @@ static inline u64 mul_u32_u32(u32 a, u32 b)
}
#endif
+#ifndef add_u64_u32
+/*
+ * Many a GCC version also messes this up.
+ * Zero extending b and then spilling everything to stack.
+ */
+static inline u64 add_u64_u32(u64 a, u32 b)
+{
+ return a + b;
+}
+#endif
+
#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
#ifndef mul_u64_u32_shr
diff --git a/lib/math/div64.c b/lib/math/div64.c
index 18a9ba26c418..bb57a48ce36a 100644
--- a/lib/math/div64.c
+++ b/lib/math/div64.c
@@ -186,33 +186,45 @@ EXPORT_SYMBOL(iter_div_u64_rem);
#endif
#if !defined(mul_u64_add_u64_div_u64) || defined(test_mul_u64_add_u64_div_u64)
-u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
-{
+
+#define mul_add(a, b, c) add_u64_u32(mul_u32_u32(a, b), c)
+
#if defined(__SIZEOF_INT128__) && !defined(test_mul_u64_add_u64_div_u64)
+static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
+{
/* native 64x64=128 bits multiplication */
u128 prod = (u128)a * b + c;
- u64 n_lo = prod, n_hi = prod >> 64;
+
+ *p_lo = prod;
+ return prod >> 64;
+}
#else
- /* perform a 64x64=128 bits multiplication manually */
- u32 a_lo = a, a_hi = a >> 32, b_lo = b, b_hi = b >> 32;
+static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
+{
+ /* perform a 64x64=128 bits multiplication in 32bit chunks */
u64 x, y, z;
/* Since (x-1)(x-1) + 2(x-1) == x.x - 1 two u32 can be added to a u64 */
- x = (u64)a_lo * b_lo + (u32)c;
- y = (u64)a_lo * b_hi + (u32)(c >> 32);
- y += (u32)(x >> 32);
- z = (u64)a_hi * b_hi + (u32)(y >> 32);
- y = (u64)a_hi * b_lo + (u32)y;
- z += (u32)(y >> 32);
- x = (y << 32) + (u32)x;
-
- u64 n_lo = x, n_hi = z;
+ x = mul_add(a, b, c);
+ y = mul_add(a, b >> 32, c >> 32);
+ y = add_u64_u32(y, x >> 32);
+ z = mul_add(a >> 32, b >> 32, y >> 32);
+ y = mul_add(a >> 32, b, y);
+ *p_lo = (y << 32) + (u32)x;
+ return add_u64_u32(z, y >> 32);
+}
#endif
+u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
+{
+ u64 n_lo, n_hi;
+
+ n_hi = mul_u64_u64_add_u64(&n_lo, a, b, c);
+
if (!n_hi)
return div64_u64(n_lo, d);
--
2.39.5
On November 5, 2025 12:10:33 PM PST, David Laight <david.laight.linux@gmail.com> wrote:
>gcc generates horrid code for both ((u64)u32_a * u32_b) and (u64_a + u32_b).
>As well as the extra instructions it can generate a lot of spills to stack
>(including spills of constant zeros and even multiplies by constant zero).
>
>mul_u32_u32() already exists to optimise the multiply.
>Add a similar add_u64_32() for the addition.
>Disable both for clang - it generates better code without them.
>
>Move the 64x64 => 128 multiply into a static inline helper function
>for code clarity.
>No need for the a/b_hi/lo variables, the implicit casts on the function
>calls do the work for us.
>Should have minimal effect on the generated code.
>
>Use mul_u32_u32() and add_u64_u32() in the 64x64 => 128 multiply
>in mul_u64_add_u64_div_u64().
>
>Signed-off-by: David Laight <david.laight.linux@gmail.com>
>Reviewed-by: Nicolas Pitre <npitre@baylibre.com>
>---
>
>Changes for v4:
>- merge in patch 8.
>- Add comments about gcc being 'broken' for mixed 32/64 bit maths.
> clang doesn't have the same issues.
>- Use a #define for define mul_add() to avoid 'defined but not used'
> errors.
>
> arch/x86/include/asm/div64.h | 19 +++++++++++++++++
> include/linux/math64.h | 11 ++++++++++
> lib/math/div64.c | 40 +++++++++++++++++++++++-------------
> 3 files changed, 56 insertions(+), 14 deletions(-)
>
>diff --git a/arch/x86/include/asm/div64.h b/arch/x86/include/asm/div64.h
>index 6d8a3de3f43a..30fd06ede751 100644
>--- a/arch/x86/include/asm/div64.h
>+++ b/arch/x86/include/asm/div64.h
>@@ -60,6 +60,12 @@ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
> }
> #define div_u64_rem div_u64_rem
>
>+/*
>+ * gcc tends to zero extend 32bit values and do full 64bit maths.
>+ * Define asm functions that avoid this.
>+ * (clang generates better code for the C versions.)
>+ */
>+#ifndef __clang__
> static inline u64 mul_u32_u32(u32 a, u32 b)
> {
> u32 high, low;
>@@ -71,6 +77,19 @@ static inline u64 mul_u32_u32(u32 a, u32 b)
> }
> #define mul_u32_u32 mul_u32_u32
>
>+static inline u64 add_u64_u32(u64 a, u32 b)
>+{
>+ u32 high = a >> 32, low = a;
>+
>+ asm ("addl %[b], %[low]; adcl $0, %[high]"
>+ : [low] "+r" (low), [high] "+r" (high)
>+ : [b] "rm" (b) );
>+
>+ return low | (u64)high << 32;
>+}
>+#define add_u64_u32 add_u64_u32
>+#endif
>+
> /*
> * __div64_32() is never called on x86, so prevent the
> * generic definition from getting built.
>diff --git a/include/linux/math64.h b/include/linux/math64.h
>index e889d850b7f1..cc305206d89f 100644
>--- a/include/linux/math64.h
>+++ b/include/linux/math64.h
>@@ -158,6 +158,17 @@ static inline u64 mul_u32_u32(u32 a, u32 b)
> }
> #endif
>
>+#ifndef add_u64_u32
>+/*
>+ * Many a GCC version also messes this up.
>+ * Zero extending b and then spilling everything to stack.
>+ */
>+static inline u64 add_u64_u32(u64 a, u32 b)
>+{
>+ return a + b;
>+}
>+#endif
>+
> #if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
>
> #ifndef mul_u64_u32_shr
>diff --git a/lib/math/div64.c b/lib/math/div64.c
>index 18a9ba26c418..bb57a48ce36a 100644
>--- a/lib/math/div64.c
>+++ b/lib/math/div64.c
>@@ -186,33 +186,45 @@ EXPORT_SYMBOL(iter_div_u64_rem);
> #endif
>
> #if !defined(mul_u64_add_u64_div_u64) || defined(test_mul_u64_add_u64_div_u64)
>-u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
>-{
>+
>+#define mul_add(a, b, c) add_u64_u32(mul_u32_u32(a, b), c)
>+
> #if defined(__SIZEOF_INT128__) && !defined(test_mul_u64_add_u64_div_u64)
>
>+static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
>+{
> /* native 64x64=128 bits multiplication */
> u128 prod = (u128)a * b + c;
>- u64 n_lo = prod, n_hi = prod >> 64;
>+
>+ *p_lo = prod;
>+ return prod >> 64;
>+}
>
> #else
>
>- /* perform a 64x64=128 bits multiplication manually */
>- u32 a_lo = a, a_hi = a >> 32, b_lo = b, b_hi = b >> 32;
>+static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
>+{
>+ /* perform a 64x64=128 bits multiplication in 32bit chunks */
> u64 x, y, z;
>
> /* Since (x-1)(x-1) + 2(x-1) == x.x - 1 two u32 can be added to a u64 */
>- x = (u64)a_lo * b_lo + (u32)c;
>- y = (u64)a_lo * b_hi + (u32)(c >> 32);
>- y += (u32)(x >> 32);
>- z = (u64)a_hi * b_hi + (u32)(y >> 32);
>- y = (u64)a_hi * b_lo + (u32)y;
>- z += (u32)(y >> 32);
>- x = (y << 32) + (u32)x;
>-
>- u64 n_lo = x, n_hi = z;
>+ x = mul_add(a, b, c);
>+ y = mul_add(a, b >> 32, c >> 32);
>+ y = add_u64_u32(y, x >> 32);
>+ z = mul_add(a >> 32, b >> 32, y >> 32);
>+ y = mul_add(a >> 32, b, y);
>+ *p_lo = (y << 32) + (u32)x;
>+ return add_u64_u32(z, y >> 32);
>+}
>
> #endif
>
>+u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
>+{
>+ u64 n_lo, n_hi;
>+
>+ n_hi = mul_u64_u64_add_u64(&n_lo, a, b, c);
>+
> if (!n_hi)
> return div64_u64(n_lo, d);
>
By the way have you filed gcc bug reports for this?
On Wed, 05 Nov 2025 15:45:29 -0800
"H. Peter Anvin" <hpa@zytor.com> wrote:
> On November 5, 2025 12:10:33 PM PST, David Laight <david.laight.linux@gmail.com> wrote:
> >gcc generates horrid code for both ((u64)u32_a * u32_b) and (u64_a + u32_b).
> >As well as the extra instructions it can generate a lot of spills to stack
> >(including spills of constant zeros and even multiplies by constant zero).
> >
> >mul_u32_u32() already exists to optimise the multiply.
> >Add a similar add_u64_32() for the addition.
> >Disable both for clang - it generates better code without them.
> >
> >Move the 64x64 => 128 multiply into a static inline helper function
> >for code clarity.
> >No need for the a/b_hi/lo variables, the implicit casts on the function
> >calls do the work for us.
> >Should have minimal effect on the generated code.
> >
> >Use mul_u32_u32() and add_u64_u32() in the 64x64 => 128 multiply
> >in mul_u64_add_u64_div_u64().
> >
> >Signed-off-by: David Laight <david.laight.linux@gmail.com>
> >Reviewed-by: Nicolas Pitre <npitre@baylibre.com>
> >---
> >
> >Changes for v4:
> >- merge in patch 8.
> >- Add comments about gcc being 'broken' for mixed 32/64 bit maths.
> > clang doesn't have the same issues.
> >- Use a #define for define mul_add() to avoid 'defined but not used'
> > errors.
> >
> > arch/x86/include/asm/div64.h | 19 +++++++++++++++++
> > include/linux/math64.h | 11 ++++++++++
> > lib/math/div64.c | 40 +++++++++++++++++++++++-------------
> > 3 files changed, 56 insertions(+), 14 deletions(-)
> >
> >diff --git a/arch/x86/include/asm/div64.h b/arch/x86/include/asm/div64.h
> >index 6d8a3de3f43a..30fd06ede751 100644
> >--- a/arch/x86/include/asm/div64.h
> >+++ b/arch/x86/include/asm/div64.h
> >@@ -60,6 +60,12 @@ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
> > }
> > #define div_u64_rem div_u64_rem
> >
> >+/*
> >+ * gcc tends to zero extend 32bit values and do full 64bit maths.
> >+ * Define asm functions that avoid this.
> >+ * (clang generates better code for the C versions.)
> >+ */
> >+#ifndef __clang__
> > static inline u64 mul_u32_u32(u32 a, u32 b)
> > {
> > u32 high, low;
> >@@ -71,6 +77,19 @@ static inline u64 mul_u32_u32(u32 a, u32 b)
> > }
> > #define mul_u32_u32 mul_u32_u32
> >
> >+static inline u64 add_u64_u32(u64 a, u32 b)
> >+{
> >+ u32 high = a >> 32, low = a;
> >+
> >+ asm ("addl %[b], %[low]; adcl $0, %[high]"
> >+ : [low] "+r" (low), [high] "+r" (high)
> >+ : [b] "rm" (b) );
> >+
> >+ return low | (u64)high << 32;
> >+}
> >+#define add_u64_u32 add_u64_u32
> >+#endif
...
>
> By the way have you filed gcc bug reports for this?
As in the need for the asm() above?
No...
I doubt one was filed when the mul version was added either.
ISTR that some very recent gcc versions were a bit better, but it depends
on minor code changes and compiler options.
I suspect that internally gcc sometimes keeps a 64bit value as two 32bit
ones, but at other times it is assigned to a 64bit internal register.
If the latter happens it always promotes a 32bit value to 64 bits and
assigns to another 64bit register.
At that point it won't split the 64bit registers - so a lot of spills to
stack happen when it tries to assign real registers.
So breath on an 'A' (dx:ax) constraint and the generated code is horrid.
Even the lo | (u64)hi << 32 can generate 'or' instructions.
The same happens for int128 on 64bit.
David
© 2016 - 2025 Red Hat, Inc.