Replace the bit by bit algorithm with one that generates 16 bits
per iteration on 32bit architectures and 32 bits on 64bit ones.
On my zen 5 this reduces the time for the tests (using the generic
code) from ~3350ns to ~1000ns.
Running the 32bit algorithm on 64bit x86 takes ~1500ns.
It'll be slightly slower on a real 32bit system, mostly due
to register pressure.
The savings for 32bit x86 are much higher (tested in userspace).
The worst case (lots of bits in the quotient) drops from ~900 clocks
to ~130 (pretty much independant of the arguments).
Other 32bit architectures may see better savings.
It is possibly to optimise for divisors that span less than
__LONG_WIDTH__/2 bits. However I suspect they don't happen that often
and it doesn't remove any slow cpu divide instructions which dominate
the result.
Typical improvements for 64bit random divides:
old new
sandy bridge: 470 150
haswell: 400 144
piledriver: 960 467 I think rdpmc is very slow.
zen5: 244 80
(Timing is 'rdpmc; mul_div(); rdpmc' with the multiply depending on the
first rdpmc and the second rdpmc depending on the quotient.)
Signed-off-by: David Laight <david.laight.linux@gmail.com>
---
Algorithm unchanged from v3.
lib/math/div64.c | 124 ++++++++++++++++++++++++++++++++---------------
1 file changed, 85 insertions(+), 39 deletions(-)
diff --git a/lib/math/div64.c b/lib/math/div64.c
index f6da7b5fb69e..4e4e962261c3 100644
--- a/lib/math/div64.c
+++ b/lib/math/div64.c
@@ -190,7 +190,6 @@ EXPORT_SYMBOL(iter_div_u64_rem);
#define mul_add(a, b, c) add_u64_u32(mul_u32_u32(a, b), c)
#if defined(__SIZEOF_INT128__) && !defined(test_mul_u64_add_u64_div_u64)
-
static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
{
/* native 64x64=128 bits multiplication */
@@ -199,9 +198,7 @@ static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
*p_lo = prod;
return prod >> 64;
}
-
#else
-
static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
{
/* perform a 64x64=128 bits multiplication in 32bit chunks */
@@ -216,12 +213,37 @@ static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
*p_lo = (y << 32) + (u32)x;
return add_u64_u32(z, y >> 32);
}
+#endif
+
+#ifndef BITS_PER_ITER
+#define BITS_PER_ITER (__LONG_WIDTH__ >= 64 ? 32 : 16)
+#endif
+
+#if BITS_PER_ITER == 32
+#define mul_u64_long_add_u64(p_lo, a, b, c) mul_u64_u64_add_u64(p_lo, a, b, c)
+#define add_u64_long(a, b) ((a) + (b))
+#else
+#undef BITS_PER_ITER
+#define BITS_PER_ITER 16
+static inline u32 mul_u64_long_add_u64(u64 *p_lo, u64 a, u32 b, u64 c)
+{
+ u64 n_lo = mul_add(a, b, c);
+ u64 n_med = mul_add(a >> 32, b, c >> 32);
+
+ n_med = add_u64_u32(n_med, n_lo >> 32);
+ *p_lo = n_med << 32 | (u32)n_lo;
+ return n_med >> 32;
+}
+#define add_u64_long(a, b) add_u64_u32(a, b)
#endif
u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
{
- u64 n_lo, n_hi;
+ unsigned long d_msig, q_digit;
+ unsigned int reps, d_z_hi;
+ u64 quotient, n_lo, n_hi;
+ u32 overflow;
n_hi = mul_u64_u64_add_u64(&n_lo, a, b, c);
@@ -240,46 +262,70 @@ u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
if (!n_hi)
return div64_u64(n_lo, d);
- int shift = __builtin_ctzll(d);
-
- /* try reducing the fraction in case the dividend becomes <= 64 bits */
- if ((n_hi >> shift) == 0) {
- u64 n = shift ? (n_lo >> shift) | (n_hi << (64 - shift)) : n_lo;
-
- return div64_u64(n, d >> shift);
- /*
- * The remainder value if needed would be:
- * res = div64_u64_rem(n, d >> shift, &rem);
- * rem = (rem << shift) + (n_lo - (n << shift));
- */
+ /* Left align the divisor, shifting the dividend to match */
+ d_z_hi = __builtin_clzll(d);
+ if (d_z_hi) {
+ d <<= d_z_hi;
+ n_hi = n_hi << d_z_hi | n_lo >> (64 - d_z_hi);
+ n_lo <<= d_z_hi;
}
- /* Do the full 128 by 64 bits division */
-
- shift = __builtin_clzll(d);
- d <<= shift;
-
- int p = 64 + shift;
- u64 res = 0;
- bool carry;
+ reps = 64 / BITS_PER_ITER;
+ /* Optimise loop count for small dividends */
+ if (!(u32)(n_hi >> 32)) {
+ reps -= 32 / BITS_PER_ITER;
+ n_hi = n_hi << 32 | n_lo >> 32;
+ n_lo <<= 32;
+ }
+#if BITS_PER_ITER == 16
+ if (!(u32)(n_hi >> 48)) {
+ reps--;
+ n_hi = add_u64_u32(n_hi << 16, n_lo >> 48);
+ n_lo <<= 16;
+ }
+#endif
- do {
- carry = n_hi >> 63;
- shift = carry ? 1 : __builtin_clzll(n_hi);
- if (p < shift)
- break;
- p -= shift;
- n_hi <<= shift;
- n_hi |= n_lo >> (64 - shift);
- n_lo <<= shift;
- if (carry || (n_hi >= d)) {
- n_hi -= d;
- res |= 1ULL << p;
+ /* Invert the dividend so we can use add instead of subtract. */
+ n_lo = ~n_lo;
+ n_hi = ~n_hi;
+
+ /*
+ * Get the most significant BITS_PER_ITER bits of the divisor.
+ * This is used to get a low 'guestimate' of the quotient digit.
+ */
+ d_msig = (d >> (64 - BITS_PER_ITER)) + 1;
+
+ /*
+ * Now do a 'long division' with BITS_PER_ITER bit 'digits'.
+ * The 'guess' quotient digit can be low and BITS_PER_ITER+1 bits.
+ * The worst case is dividing ~0 by 0x8000 which requires two subtracts.
+ */
+ quotient = 0;
+ while (reps--) {
+ q_digit = (unsigned long)(~n_hi >> (64 - 2 * BITS_PER_ITER)) / d_msig;
+ /* Shift 'n' left to align with the product q_digit * d */
+ overflow = n_hi >> (64 - BITS_PER_ITER);
+ n_hi = add_u64_u32(n_hi << BITS_PER_ITER, n_lo >> (64 - BITS_PER_ITER));
+ n_lo <<= BITS_PER_ITER;
+ /* Add product to negated divisor */
+ overflow += mul_u64_long_add_u64(&n_hi, d, q_digit, n_hi);
+ /* Adjust for the q_digit 'guestimate' being low */
+ while (overflow < 0xffffffff >> (32 - BITS_PER_ITER)) {
+ q_digit++;
+ n_hi += d;
+ overflow += n_hi < d;
}
- } while (n_hi);
- /* The remainder value if needed would be n_hi << p */
+ quotient = add_u64_long(quotient << BITS_PER_ITER, q_digit);
+ }
- return res;
+ /*
+ * The above only ensures the remainder doesn't overflow,
+ * it can still be possible to add (aka subtract) another copy
+ * of the divisor.
+ */
+ if ((n_hi + d) > n_hi)
+ quotient++;
+ return quotient;
}
#if !defined(test_mul_u64_add_u64_div_u64)
EXPORT_SYMBOL(mul_u64_add_u64_div_u64);
--
2.39.5
On Wed, 29 Oct 2025, David Laight wrote:
> Replace the bit by bit algorithm with one that generates 16 bits
> per iteration on 32bit architectures and 32 bits on 64bit ones.
>
> On my zen 5 this reduces the time for the tests (using the generic
> code) from ~3350ns to ~1000ns.
>
> Running the 32bit algorithm on 64bit x86 takes ~1500ns.
> It'll be slightly slower on a real 32bit system, mostly due
> to register pressure.
>
> The savings for 32bit x86 are much higher (tested in userspace).
> The worst case (lots of bits in the quotient) drops from ~900 clocks
> to ~130 (pretty much independant of the arguments).
> Other 32bit architectures may see better savings.
>
> It is possibly to optimise for divisors that span less than
> __LONG_WIDTH__/2 bits. However I suspect they don't happen that often
> and it doesn't remove any slow cpu divide instructions which dominate
> the result.
>
> Typical improvements for 64bit random divides:
> old new
> sandy bridge: 470 150
> haswell: 400 144
> piledriver: 960 467 I think rdpmc is very slow.
> zen5: 244 80
> (Timing is 'rdpmc; mul_div(); rdpmc' with the multiply depending on the
> first rdpmc and the second rdpmc depending on the quotient.)
>
> Signed-off-by: David Laight <david.laight.linux@gmail.com>
Reviewed-by: Nicolas Pitre <npitre@baylibre.com>
> ---
>
> Algorithm unchanged from v3.
>
> lib/math/div64.c | 124 ++++++++++++++++++++++++++++++++---------------
> 1 file changed, 85 insertions(+), 39 deletions(-)
>
> diff --git a/lib/math/div64.c b/lib/math/div64.c
> index f6da7b5fb69e..4e4e962261c3 100644
> --- a/lib/math/div64.c
> +++ b/lib/math/div64.c
> @@ -190,7 +190,6 @@ EXPORT_SYMBOL(iter_div_u64_rem);
> #define mul_add(a, b, c) add_u64_u32(mul_u32_u32(a, b), c)
>
> #if defined(__SIZEOF_INT128__) && !defined(test_mul_u64_add_u64_div_u64)
> -
> static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
> {
> /* native 64x64=128 bits multiplication */
> @@ -199,9 +198,7 @@ static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
> *p_lo = prod;
> return prod >> 64;
> }
> -
> #else
> -
> static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
> {
> /* perform a 64x64=128 bits multiplication in 32bit chunks */
> @@ -216,12 +213,37 @@ static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
> *p_lo = (y << 32) + (u32)x;
> return add_u64_u32(z, y >> 32);
> }
> +#endif
> +
> +#ifndef BITS_PER_ITER
> +#define BITS_PER_ITER (__LONG_WIDTH__ >= 64 ? 32 : 16)
> +#endif
> +
> +#if BITS_PER_ITER == 32
> +#define mul_u64_long_add_u64(p_lo, a, b, c) mul_u64_u64_add_u64(p_lo, a, b, c)
> +#define add_u64_long(a, b) ((a) + (b))
> +#else
> +#undef BITS_PER_ITER
> +#define BITS_PER_ITER 16
> +static inline u32 mul_u64_long_add_u64(u64 *p_lo, u64 a, u32 b, u64 c)
> +{
> + u64 n_lo = mul_add(a, b, c);
> + u64 n_med = mul_add(a >> 32, b, c >> 32);
> +
> + n_med = add_u64_u32(n_med, n_lo >> 32);
> + *p_lo = n_med << 32 | (u32)n_lo;
> + return n_med >> 32;
> +}
>
> +#define add_u64_long(a, b) add_u64_u32(a, b)
> #endif
>
> u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
> {
> - u64 n_lo, n_hi;
> + unsigned long d_msig, q_digit;
> + unsigned int reps, d_z_hi;
> + u64 quotient, n_lo, n_hi;
> + u32 overflow;
>
> n_hi = mul_u64_u64_add_u64(&n_lo, a, b, c);
>
> @@ -240,46 +262,70 @@ u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
> if (!n_hi)
> return div64_u64(n_lo, d);
>
> - int shift = __builtin_ctzll(d);
> -
> - /* try reducing the fraction in case the dividend becomes <= 64 bits */
> - if ((n_hi >> shift) == 0) {
> - u64 n = shift ? (n_lo >> shift) | (n_hi << (64 - shift)) : n_lo;
> -
> - return div64_u64(n, d >> shift);
> - /*
> - * The remainder value if needed would be:
> - * res = div64_u64_rem(n, d >> shift, &rem);
> - * rem = (rem << shift) + (n_lo - (n << shift));
> - */
> + /* Left align the divisor, shifting the dividend to match */
> + d_z_hi = __builtin_clzll(d);
> + if (d_z_hi) {
> + d <<= d_z_hi;
> + n_hi = n_hi << d_z_hi | n_lo >> (64 - d_z_hi);
> + n_lo <<= d_z_hi;
> }
>
> - /* Do the full 128 by 64 bits division */
> -
> - shift = __builtin_clzll(d);
> - d <<= shift;
> -
> - int p = 64 + shift;
> - u64 res = 0;
> - bool carry;
> + reps = 64 / BITS_PER_ITER;
> + /* Optimise loop count for small dividends */
> + if (!(u32)(n_hi >> 32)) {
> + reps -= 32 / BITS_PER_ITER;
> + n_hi = n_hi << 32 | n_lo >> 32;
> + n_lo <<= 32;
> + }
> +#if BITS_PER_ITER == 16
> + if (!(u32)(n_hi >> 48)) {
> + reps--;
> + n_hi = add_u64_u32(n_hi << 16, n_lo >> 48);
> + n_lo <<= 16;
> + }
> +#endif
>
> - do {
> - carry = n_hi >> 63;
> - shift = carry ? 1 : __builtin_clzll(n_hi);
> - if (p < shift)
> - break;
> - p -= shift;
> - n_hi <<= shift;
> - n_hi |= n_lo >> (64 - shift);
> - n_lo <<= shift;
> - if (carry || (n_hi >= d)) {
> - n_hi -= d;
> - res |= 1ULL << p;
> + /* Invert the dividend so we can use add instead of subtract. */
> + n_lo = ~n_lo;
> + n_hi = ~n_hi;
> +
> + /*
> + * Get the most significant BITS_PER_ITER bits of the divisor.
> + * This is used to get a low 'guestimate' of the quotient digit.
> + */
> + d_msig = (d >> (64 - BITS_PER_ITER)) + 1;
> +
> + /*
> + * Now do a 'long division' with BITS_PER_ITER bit 'digits'.
> + * The 'guess' quotient digit can be low and BITS_PER_ITER+1 bits.
> + * The worst case is dividing ~0 by 0x8000 which requires two subtracts.
> + */
> + quotient = 0;
> + while (reps--) {
> + q_digit = (unsigned long)(~n_hi >> (64 - 2 * BITS_PER_ITER)) / d_msig;
> + /* Shift 'n' left to align with the product q_digit * d */
> + overflow = n_hi >> (64 - BITS_PER_ITER);
> + n_hi = add_u64_u32(n_hi << BITS_PER_ITER, n_lo >> (64 - BITS_PER_ITER));
> + n_lo <<= BITS_PER_ITER;
> + /* Add product to negated divisor */
> + overflow += mul_u64_long_add_u64(&n_hi, d, q_digit, n_hi);
> + /* Adjust for the q_digit 'guestimate' being low */
> + while (overflow < 0xffffffff >> (32 - BITS_PER_ITER)) {
> + q_digit++;
> + n_hi += d;
> + overflow += n_hi < d;
> }
> - } while (n_hi);
> - /* The remainder value if needed would be n_hi << p */
> + quotient = add_u64_long(quotient << BITS_PER_ITER, q_digit);
> + }
>
> - return res;
> + /*
> + * The above only ensures the remainder doesn't overflow,
> + * it can still be possible to add (aka subtract) another copy
> + * of the divisor.
> + */
> + if ((n_hi + d) > n_hi)
> + quotient++;
> + return quotient;
> }
> #if !defined(test_mul_u64_add_u64_div_u64)
> EXPORT_SYMBOL(mul_u64_add_u64_div_u64);
> --
> 2.39.5
>
>
© 2016 - 2025 Red Hat, Inc.