This is a port of the Binder data structure introduced in commit
15d9da3f818c ("binder: use bitmap for faster descriptor lookup") to
Rust.
Like drivers/android/dbitmap.h, the ID pool abstraction lets
clients acquire and release IDs. The implementation uses a bitmap to
know what IDs are in use, and gives clients fine-grained control over
the time of allocation. This fine-grained control is needed in the
Android Binder. We provide an example that release a spinlock for
allocation and unit tests (rustdoc examples).
The implementation is not aware that the underlying Bitmap abstraction
handles lengths below BITS_PER_LONG without allocation.
Suggested-by: Alice Ryhl <aliceryhl@google.com>
Signed-off-by: Burak Emir <bqe@google.com>
---
MAINTAINERS | 1 +
rust/kernel/id_pool.rs | 201 +++++++++++++++++++++++++++++++++++++++++
rust/kernel/lib.rs | 1 +
3 files changed, 203 insertions(+)
create mode 100644 rust/kernel/id_pool.rs
diff --git a/MAINTAINERS b/MAINTAINERS
index bc8f05431689..61ac5da0dfbf 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -4120,6 +4120,7 @@ M: Burak Emir <bqe@google.com>
R: Yury Norov <yury.norov@gmail.com>
S: Maintained
F: rust/kernel/bitmap.rs
+F: rust/kernel/id_pool.rs
BITOPS API
M: Yury Norov <yury.norov@gmail.com>
diff --git a/rust/kernel/id_pool.rs b/rust/kernel/id_pool.rs
new file mode 100644
index 000000000000..8f07526bb580
--- /dev/null
+++ b/rust/kernel/id_pool.rs
@@ -0,0 +1,201 @@
+// SPDX-License-Identifier: GPL-2.0
+
+// Copyright (C) 2025 Google LLC.
+
+//! Rust API for an ID pool backed by a `Bitmap`.
+
+use crate::alloc::{AllocError, Flags};
+use crate::bitmap::Bitmap;
+
+/// Represents a dynamic ID pool backed by a `Bitmap`.
+///
+/// Clients acquire and release IDs from zero bits in a bitmap.
+///
+/// The ID pool can grow or shrink as needed. It has been designed
+/// to support the scenario where users need to control the time
+/// of allocation of a new backing bitmap, which may require release
+/// of locks.
+/// These operations then, are verified to determine if the grow or
+/// shrink is sill valid.
+///
+/// # Examples
+///
+/// Basic usage
+///
+/// ```
+/// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
+/// use kernel::id_pool::IdPool;
+///
+/// let mut pool = IdPool::new(64, GFP_KERNEL)?;
+/// for i in 0..64 {
+/// assert_eq!(i, pool.acquire_next_id(i).ok_or(ENOSPC)?);
+/// }
+///
+/// pool.release_id(23);
+/// assert_eq!(23, pool.acquire_next_id(0).ok_or(ENOSPC)?);
+///
+/// assert_eq!(None, pool.acquire_next_id(0)); // time to realloc.
+/// let resizer = pool.grow_alloc().alloc(GFP_KERNEL)?;
+/// pool.grow(resizer);
+///
+/// assert_eq!(pool.acquire_next_id(0), Some(64));
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// Releasing spinlock to grow the pool
+///
+/// ```no_run
+/// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
+/// use kernel::sync::{new_spinlock, SpinLock};
+/// use kernel::id_pool::IdPool;
+///
+/// fn get_id_maybe_alloc(guarded_pool: &SpinLock<IdPool>) -> Result<usize, AllocError> {
+/// let mut pool = guarded_pool.lock();
+/// loop {
+/// match pool.acquire_next_id(0) {
+/// Some(index) => return Ok(index),
+/// None => {
+/// let alloc_request = pool.grow_alloc();
+/// drop(pool);
+/// let resizer = alloc_request.alloc(GFP_KERNEL)?;
+/// pool = guarded_pool.lock();
+/// pool.grow(resizer)
+/// }
+/// }
+/// }
+/// }
+/// ```
+pub struct IdPool {
+ map: Bitmap,
+}
+
+/// Returned when the `IdPool` should change size.
+pub struct AllocRequest {
+ nbits: usize,
+}
+
+/// Contains an allocated `Bitmap` for resizing `IdPool`.
+pub struct PoolResizer {
+ new: Bitmap,
+}
+
+impl AllocRequest {
+ /// Allocates a new `Bitmap` for `IdPool`.
+ pub fn alloc(&self, flags: Flags) -> Result<PoolResizer, AllocError> {
+ let new = Bitmap::new(self.nbits, flags)?;
+ Ok(PoolResizer { new })
+ }
+}
+
+impl IdPool {
+ /// Constructs a new `[IdPool]`.
+ #[inline]
+ pub fn new(nbits: usize, flags: Flags) -> Result<Self, AllocError> {
+ let map = Bitmap::new(nbits, flags)?;
+ Ok(Self { map })
+ }
+
+ /// Returns how many IDs this pool can currently have.
+ #[inline]
+ pub fn len(&self) -> usize {
+ self.map.len()
+ }
+
+ /// Returns an [`AllocRequest`] if the [`IdPool`] can be shrunk, [`None`] otherwise.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
+ /// use kernel::id_pool::{AllocRequest, IdPool};
+ ///
+ /// let mut pool = IdPool::new(1024, GFP_KERNEL)?;
+ /// let alloc_request = pool.shrink_alloc().ok_or(AllocError)?;
+ /// let resizer = alloc_request.alloc(GFP_KERNEL)?;
+ /// pool.shrink(resizer);
+ /// assert_eq!(pool.len(), kernel::bindings::BITS_PER_LONG as usize);
+ /// # Ok::<(), AllocError>(())
+ /// ```
+ #[inline]
+ pub fn shrink_alloc(&self) -> Option<AllocRequest> {
+ let len = self.map.len();
+ if len <= bindings::BITS_PER_LONG as usize {
+ return None;
+ }
+ /*
+ * Determine if the bitmap can shrink based on the position of
+ * its last set bit. If the bit is within the first quarter of
+ * the bitmap then shrinking is possible. In this case, the
+ * bitmap should shrink to half its current size.
+ */
+ match self.map.last_bit() {
+ Some(bit) => {
+ if bit < (len >> 2) {
+ Some(AllocRequest { nbits: len >> 1 })
+ } else {
+ None
+ }
+ }
+ None => Some(AllocRequest {
+ nbits: bindings::BITS_PER_LONG as usize,
+ }),
+ }
+ }
+
+ /// Shrinks pool by using a new `Bitmap`, if still possible.
+ #[inline]
+ pub fn shrink(&mut self, mut resizer: PoolResizer) {
+ // Verify that shrinking is still possible. The `resizer`
+ // bitmap might have been allocated without locks, so this call
+ // could now be outdated. In this case, drop `resizer` and move on.
+ if let Some(AllocRequest { nbits }) = self.shrink_alloc() {
+ if nbits <= resizer.new.len() {
+ resizer.new.copy_and_extend(&self.map);
+ self.map = resizer.new;
+ return;
+ }
+ }
+ }
+
+ /// Returns an `AllocRequest` for growing this `IdPool`.
+ #[inline]
+ pub fn grow_alloc(&self) -> AllocRequest {
+ AllocRequest {
+ nbits: self.map.len() << 1,
+ }
+ }
+
+ /// Grows pool by using a new `Bitmap`, if still necessary.
+ #[inline]
+ pub fn grow(&mut self, mut resizer: PoolResizer) {
+ // `resizer` bitmap might have been allocated without locks,
+ // so this call could now be outdated. In this case, drop
+ // `resizer` and move on.
+ if resizer.new.len() <= self.map.len() {
+ return;
+ }
+
+ resizer.new.copy_and_extend(&self.map);
+ self.map = resizer.new;
+ }
+
+ /// Acquires a new ID by finding and setting the next zero bit in the
+ /// bitmap. Upon success, returns its index. Otherwise, returns `None`
+ /// to indicate that a `grow_alloc` is needed.
+ #[inline]
+ pub fn acquire_next_id(&mut self, offset: usize) -> Option<usize> {
+ match self.map.next_zero_bit(offset) {
+ res @ Some(nr) => {
+ self.map.set_bit(nr);
+ res
+ }
+ None => None,
+ }
+ }
+
+ /// Releases an ID.
+ #[inline]
+ pub fn release_id(&mut self, id: usize) {
+ self.map.clear_bit(id);
+ }
+}
diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
index 9f675c0841e6..d77a27bee388 100644
--- a/rust/kernel/lib.rs
+++ b/rust/kernel/lib.rs
@@ -51,6 +51,7 @@
#[cfg(CONFIG_RUST_FW_LOADER_ABSTRACTIONS)]
pub mod firmware;
pub mod fs;
+pub mod id_pool;
pub mod init;
pub mod io;
pub mod ioctl;
--
2.49.0.395.g12beb8f557-goog
On Fri, Mar 21, 2025 at 11:15:32AM +0000, Burak Emir wrote:
> This is a port of the Binder data structure introduced in commit
> 15d9da3f818c ("binder: use bitmap for faster descriptor lookup") to
> Rust.
>
> Like drivers/android/dbitmap.h, the ID pool abstraction lets
> clients acquire and release IDs. The implementation uses a bitmap to
> know what IDs are in use, and gives clients fine-grained control over
> the time of allocation. This fine-grained control is needed in the
> Android Binder. We provide an example that release a spinlock for
> allocation and unit tests (rustdoc examples).
>
> The implementation is not aware that the underlying Bitmap abstraction
> handles lengths below BITS_PER_LONG without allocation.
>
> Suggested-by: Alice Ryhl <aliceryhl@google.com>
> Signed-off-by: Burak Emir <bqe@google.com>
Before I'll dig into this, can you describe the usecase? Is this just
a dynamic array of bits, or something more unusual? What's your desired
complexity for an acquire_id() - O(n) strictly, or amortized? Are you
going to use it in IRQ or similar restricted contexts?
> ---
> MAINTAINERS | 1 +
> rust/kernel/id_pool.rs | 201 +++++++++++++++++++++++++++++++++++++++++
> rust/kernel/lib.rs | 1 +
> 3 files changed, 203 insertions(+)
> create mode 100644 rust/kernel/id_pool.rs
>
> diff --git a/MAINTAINERS b/MAINTAINERS
> index bc8f05431689..61ac5da0dfbf 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -4120,6 +4120,7 @@ M: Burak Emir <bqe@google.com>
> R: Yury Norov <yury.norov@gmail.com>
> S: Maintained
> F: rust/kernel/bitmap.rs
> +F: rust/kernel/id_pool.rs
>
> BITOPS API
> M: Yury Norov <yury.norov@gmail.com>
> diff --git a/rust/kernel/id_pool.rs b/rust/kernel/id_pool.rs
> new file mode 100644
> index 000000000000..8f07526bb580
> --- /dev/null
> +++ b/rust/kernel/id_pool.rs
> @@ -0,0 +1,201 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +// Copyright (C) 2025 Google LLC.
> +
> +//! Rust API for an ID pool backed by a `Bitmap`.
> +
> +use crate::alloc::{AllocError, Flags};
> +use crate::bitmap::Bitmap;
> +
> +/// Represents a dynamic ID pool backed by a `Bitmap`.
> +///
> +/// Clients acquire and release IDs from zero bits in a bitmap.
> +///
> +/// The ID pool can grow or shrink as needed. It has been designed
> +/// to support the scenario where users need to control the time
> +/// of allocation of a new backing bitmap, which may require release
> +/// of locks.
> +/// These operations then, are verified to determine if the grow or
> +/// shrink is sill valid.
> +///
> +/// # Examples
> +///
> +/// Basic usage
> +///
> +/// ```
> +/// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
> +/// use kernel::id_pool::IdPool;
> +///
> +/// let mut pool = IdPool::new(64, GFP_KERNEL)?;
> +/// for i in 0..64 {
> +/// assert_eq!(i, pool.acquire_next_id(i).ok_or(ENOSPC)?);
> +/// }
> +///
> +/// pool.release_id(23);
> +/// assert_eq!(23, pool.acquire_next_id(0).ok_or(ENOSPC)?);
> +///
> +/// assert_eq!(None, pool.acquire_next_id(0)); // time to realloc.
> +/// let resizer = pool.grow_alloc().alloc(GFP_KERNEL)?;
> +/// pool.grow(resizer);
> +///
> +/// assert_eq!(pool.acquire_next_id(0), Some(64));
> +/// # Ok::<(), Error>(())
> +/// ```
> +///
> +/// Releasing spinlock to grow the pool
> +///
> +/// ```no_run
> +/// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
> +/// use kernel::sync::{new_spinlock, SpinLock};
> +/// use kernel::id_pool::IdPool;
> +///
> +/// fn get_id_maybe_alloc(guarded_pool: &SpinLock<IdPool>) -> Result<usize, AllocError> {
> +/// let mut pool = guarded_pool.lock();
> +/// loop {
> +/// match pool.acquire_next_id(0) {
> +/// Some(index) => return Ok(index),
> +/// None => {
> +/// let alloc_request = pool.grow_alloc();
> +/// drop(pool);
> +/// let resizer = alloc_request.alloc(GFP_KERNEL)?;
> +/// pool = guarded_pool.lock();
> +/// pool.grow(resizer)
> +/// }
> +/// }
> +/// }
> +/// }
> +/// ```
> +pub struct IdPool {
> + map: Bitmap,
> +}
> +
> +/// Returned when the `IdPool` should change size.
> +pub struct AllocRequest {
> + nbits: usize,
> +}
> +
> +/// Contains an allocated `Bitmap` for resizing `IdPool`.
> +pub struct PoolResizer {
> + new: Bitmap,
> +}
> +
> +impl AllocRequest {
> + /// Allocates a new `Bitmap` for `IdPool`.
> + pub fn alloc(&self, flags: Flags) -> Result<PoolResizer, AllocError> {
> + let new = Bitmap::new(self.nbits, flags)?;
> + Ok(PoolResizer { new })
> + }
> +}
> +
> +impl IdPool {
> + /// Constructs a new `[IdPool]`.
> + #[inline]
> + pub fn new(nbits: usize, flags: Flags) -> Result<Self, AllocError> {
> + let map = Bitmap::new(nbits, flags)?;
> + Ok(Self { map })
> + }
> +
> + /// Returns how many IDs this pool can currently have.
> + #[inline]
> + pub fn len(&self) -> usize {
> + self.map.len()
> + }
> +
> + /// Returns an [`AllocRequest`] if the [`IdPool`] can be shrunk, [`None`] otherwise.
> + ///
> + /// # Examples
> + ///
> + /// ```
> + /// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
> + /// use kernel::id_pool::{AllocRequest, IdPool};
> + ///
> + /// let mut pool = IdPool::new(1024, GFP_KERNEL)?;
> + /// let alloc_request = pool.shrink_alloc().ok_or(AllocError)?;
> + /// let resizer = alloc_request.alloc(GFP_KERNEL)?;
> + /// pool.shrink(resizer);
> + /// assert_eq!(pool.len(), kernel::bindings::BITS_PER_LONG as usize);
> + /// # Ok::<(), AllocError>(())
> + /// ```
> + #[inline]
> + pub fn shrink_alloc(&self) -> Option<AllocRequest> {
> + let len = self.map.len();
> + if len <= bindings::BITS_PER_LONG as usize {
> + return None;
> + }
> + /*
> + * Determine if the bitmap can shrink based on the position of
> + * its last set bit. If the bit is within the first quarter of
> + * the bitmap then shrinking is possible. In this case, the
> + * bitmap should shrink to half its current size.
> + */
> + match self.map.last_bit() {
> + Some(bit) => {
> + if bit < (len >> 2) {
> + Some(AllocRequest { nbits: len >> 1 })
> + } else {
> + None
> + }
> + }
> + None => Some(AllocRequest {
> + nbits: bindings::BITS_PER_LONG as usize,
> + }),
> + }
> + }
> +
> + /// Shrinks pool by using a new `Bitmap`, if still possible.
> + #[inline]
> + pub fn shrink(&mut self, mut resizer: PoolResizer) {
> + // Verify that shrinking is still possible. The `resizer`
> + // bitmap might have been allocated without locks, so this call
> + // could now be outdated. In this case, drop `resizer` and move on.
> + if let Some(AllocRequest { nbits }) = self.shrink_alloc() {
> + if nbits <= resizer.new.len() {
> + resizer.new.copy_and_extend(&self.map);
> + self.map = resizer.new;
> + return;
> + }
> + }
> + }
> +
> + /// Returns an `AllocRequest` for growing this `IdPool`.
> + #[inline]
> + pub fn grow_alloc(&self) -> AllocRequest {
> + AllocRequest {
> + nbits: self.map.len() << 1,
> + }
> + }
> +
> + /// Grows pool by using a new `Bitmap`, if still necessary.
> + #[inline]
> + pub fn grow(&mut self, mut resizer: PoolResizer) {
> + // `resizer` bitmap might have been allocated without locks,
> + // so this call could now be outdated. In this case, drop
> + // `resizer` and move on.
> + if resizer.new.len() <= self.map.len() {
> + return;
> + }
> +
> + resizer.new.copy_and_extend(&self.map);
> + self.map = resizer.new;
> + }
> +
> + /// Acquires a new ID by finding and setting the next zero bit in the
> + /// bitmap. Upon success, returns its index. Otherwise, returns `None`
> + /// to indicate that a `grow_alloc` is needed.
> + #[inline]
> + pub fn acquire_next_id(&mut self, offset: usize) -> Option<usize> {
> + match self.map.next_zero_bit(offset) {
> + res @ Some(nr) => {
> + self.map.set_bit(nr);
> + res
> + }
> + None => None,
> + }
> + }
> +
> + /// Releases an ID.
> + #[inline]
> + pub fn release_id(&mut self, id: usize) {
> + self.map.clear_bit(id);
> + }
> +}
> diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
> index 9f675c0841e6..d77a27bee388 100644
> --- a/rust/kernel/lib.rs
> +++ b/rust/kernel/lib.rs
> @@ -51,6 +51,7 @@
> #[cfg(CONFIG_RUST_FW_LOADER_ABSTRACTIONS)]
> pub mod firmware;
> pub mod fs;
> +pub mod id_pool;
> pub mod init;
> pub mod io;
> pub mod ioctl;
> --
> 2.49.0.395.g12beb8f557-goog
On Fri, Mar 21, 2025 at 5:34 PM Yury Norov <yury.norov@gmail.com> wrote:
>
> On Fri, Mar 21, 2025 at 11:15:32AM +0000, Burak Emir wrote:
> > This is a port of the Binder data structure introduced in commit
> > 15d9da3f818c ("binder: use bitmap for faster descriptor lookup") to
> > Rust.
> >
> > Like drivers/android/dbitmap.h, the ID pool abstraction lets
> > clients acquire and release IDs. The implementation uses a bitmap to
> > know what IDs are in use, and gives clients fine-grained control over
> > the time of allocation. This fine-grained control is needed in the
> > Android Binder. We provide an example that release a spinlock for
> > allocation and unit tests (rustdoc examples).
> >
> > The implementation is not aware that the underlying Bitmap abstraction
> > handles lengths below BITS_PER_LONG without allocation.
> >
> > Suggested-by: Alice Ryhl <aliceryhl@google.com>
> > Signed-off-by: Burak Emir <bqe@google.com>
>
> Before I'll dig into this, can you describe the usecase? Is this just
> a dynamic array of bits, or something more unusual? What's your desired
> complexity for an acquire_id() - O(n) strictly, or amortized? Are you
> going to use it in IRQ or similar restricted contexts?
Alice is probably the better person to answer. My rough summary of the
id pool use case is:
- In binder, there are these objects called nodes. Each node is owned
by one process.
- Nodes can exchange messages. This exchange can happen across
processes. There is a "first node" that sets up connections.
- Every process needs to manage ID to node mapping, which it does by
assigning (process-local) IDs.
- In order to not exhaust ID space, ID numbers get reused.
> > ---
> > MAINTAINERS | 1 +
> > rust/kernel/id_pool.rs | 201 +++++++++++++++++++++++++++++++++++++++++
> > rust/kernel/lib.rs | 1 +
> > 3 files changed, 203 insertions(+)
> > create mode 100644 rust/kernel/id_pool.rs
> >
> > diff --git a/MAINTAINERS b/MAINTAINERS
> > index bc8f05431689..61ac5da0dfbf 100644
> > --- a/MAINTAINERS
> > +++ b/MAINTAINERS
> > @@ -4120,6 +4120,7 @@ M: Burak Emir <bqe@google.com>
> > R: Yury Norov <yury.norov@gmail.com>
> > S: Maintained
> > F: rust/kernel/bitmap.rs
> > +F: rust/kernel/id_pool.rs
> >
> > BITOPS API
> > M: Yury Norov <yury.norov@gmail.com>
> > diff --git a/rust/kernel/id_pool.rs b/rust/kernel/id_pool.rs
> > new file mode 100644
> > index 000000000000..8f07526bb580
> > --- /dev/null
> > +++ b/rust/kernel/id_pool.rs
> > @@ -0,0 +1,201 @@
> > +// SPDX-License-Identifier: GPL-2.0
> > +
> > +// Copyright (C) 2025 Google LLC.
> > +
> > +//! Rust API for an ID pool backed by a `Bitmap`.
> > +
> > +use crate::alloc::{AllocError, Flags};
> > +use crate::bitmap::Bitmap;
> > +
> > +/// Represents a dynamic ID pool backed by a `Bitmap`.
> > +///
> > +/// Clients acquire and release IDs from zero bits in a bitmap.
> > +///
> > +/// The ID pool can grow or shrink as needed. It has been designed
> > +/// to support the scenario where users need to control the time
> > +/// of allocation of a new backing bitmap, which may require release
> > +/// of locks.
> > +/// These operations then, are verified to determine if the grow or
> > +/// shrink is sill valid.
> > +///
> > +/// # Examples
> > +///
> > +/// Basic usage
> > +///
> > +/// ```
> > +/// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
> > +/// use kernel::id_pool::IdPool;
> > +///
> > +/// let mut pool = IdPool::new(64, GFP_KERNEL)?;
> > +/// for i in 0..64 {
> > +/// assert_eq!(i, pool.acquire_next_id(i).ok_or(ENOSPC)?);
> > +/// }
> > +///
> > +/// pool.release_id(23);
> > +/// assert_eq!(23, pool.acquire_next_id(0).ok_or(ENOSPC)?);
> > +///
> > +/// assert_eq!(None, pool.acquire_next_id(0)); // time to realloc.
> > +/// let resizer = pool.grow_alloc().alloc(GFP_KERNEL)?;
> > +/// pool.grow(resizer);
> > +///
> > +/// assert_eq!(pool.acquire_next_id(0), Some(64));
> > +/// # Ok::<(), Error>(())
> > +/// ```
> > +///
> > +/// Releasing spinlock to grow the pool
> > +///
> > +/// ```no_run
> > +/// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
> > +/// use kernel::sync::{new_spinlock, SpinLock};
> > +/// use kernel::id_pool::IdPool;
> > +///
> > +/// fn get_id_maybe_alloc(guarded_pool: &SpinLock<IdPool>) -> Result<usize, AllocError> {
> > +/// let mut pool = guarded_pool.lock();
> > +/// loop {
> > +/// match pool.acquire_next_id(0) {
> > +/// Some(index) => return Ok(index),
> > +/// None => {
> > +/// let alloc_request = pool.grow_alloc();
> > +/// drop(pool);
> > +/// let resizer = alloc_request.alloc(GFP_KERNEL)?;
> > +/// pool = guarded_pool.lock();
> > +/// pool.grow(resizer)
> > +/// }
> > +/// }
> > +/// }
> > +/// }
> > +/// ```
> > +pub struct IdPool {
> > + map: Bitmap,
> > +}
> > +
> > +/// Returned when the `IdPool` should change size.
> > +pub struct AllocRequest {
> > + nbits: usize,
> > +}
> > +
> > +/// Contains an allocated `Bitmap` for resizing `IdPool`.
> > +pub struct PoolResizer {
> > + new: Bitmap,
> > +}
> > +
> > +impl AllocRequest {
> > + /// Allocates a new `Bitmap` for `IdPool`.
> > + pub fn alloc(&self, flags: Flags) -> Result<PoolResizer, AllocError> {
> > + let new = Bitmap::new(self.nbits, flags)?;
> > + Ok(PoolResizer { new })
> > + }
> > +}
> > +
> > +impl IdPool {
> > + /// Constructs a new `[IdPool]`.
> > + #[inline]
> > + pub fn new(nbits: usize, flags: Flags) -> Result<Self, AllocError> {
> > + let map = Bitmap::new(nbits, flags)?;
> > + Ok(Self { map })
> > + }
> > +
> > + /// Returns how many IDs this pool can currently have.
> > + #[inline]
> > + pub fn len(&self) -> usize {
> > + self.map.len()
> > + }
> > +
> > + /// Returns an [`AllocRequest`] if the [`IdPool`] can be shrunk, [`None`] otherwise.
> > + ///
> > + /// # Examples
> > + ///
> > + /// ```
> > + /// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
> > + /// use kernel::id_pool::{AllocRequest, IdPool};
> > + ///
> > + /// let mut pool = IdPool::new(1024, GFP_KERNEL)?;
> > + /// let alloc_request = pool.shrink_alloc().ok_or(AllocError)?;
> > + /// let resizer = alloc_request.alloc(GFP_KERNEL)?;
> > + /// pool.shrink(resizer);
> > + /// assert_eq!(pool.len(), kernel::bindings::BITS_PER_LONG as usize);
> > + /// # Ok::<(), AllocError>(())
> > + /// ```
> > + #[inline]
> > + pub fn shrink_alloc(&self) -> Option<AllocRequest> {
> > + let len = self.map.len();
> > + if len <= bindings::BITS_PER_LONG as usize {
> > + return None;
> > + }
> > + /*
> > + * Determine if the bitmap can shrink based on the position of
> > + * its last set bit. If the bit is within the first quarter of
> > + * the bitmap then shrinking is possible. In this case, the
> > + * bitmap should shrink to half its current size.
> > + */
> > + match self.map.last_bit() {
> > + Some(bit) => {
> > + if bit < (len >> 2) {
> > + Some(AllocRequest { nbits: len >> 1 })
> > + } else {
> > + None
> > + }
> > + }
> > + None => Some(AllocRequest {
> > + nbits: bindings::BITS_PER_LONG as usize,
> > + }),
> > + }
> > + }
> > +
> > + /// Shrinks pool by using a new `Bitmap`, if still possible.
> > + #[inline]
> > + pub fn shrink(&mut self, mut resizer: PoolResizer) {
> > + // Verify that shrinking is still possible. The `resizer`
> > + // bitmap might have been allocated without locks, so this call
> > + // could now be outdated. In this case, drop `resizer` and move on.
> > + if let Some(AllocRequest { nbits }) = self.shrink_alloc() {
> > + if nbits <= resizer.new.len() {
> > + resizer.new.copy_and_extend(&self.map);
> > + self.map = resizer.new;
> > + return;
> > + }
> > + }
> > + }
> > +
> > + /// Returns an `AllocRequest` for growing this `IdPool`.
> > + #[inline]
> > + pub fn grow_alloc(&self) -> AllocRequest {
> > + AllocRequest {
> > + nbits: self.map.len() << 1,
> > + }
> > + }
> > +
> > + /// Grows pool by using a new `Bitmap`, if still necessary.
> > + #[inline]
> > + pub fn grow(&mut self, mut resizer: PoolResizer) {
> > + // `resizer` bitmap might have been allocated without locks,
> > + // so this call could now be outdated. In this case, drop
> > + // `resizer` and move on.
> > + if resizer.new.len() <= self.map.len() {
> > + return;
> > + }
> > +
> > + resizer.new.copy_and_extend(&self.map);
> > + self.map = resizer.new;
> > + }
> > +
> > + /// Acquires a new ID by finding and setting the next zero bit in the
> > + /// bitmap. Upon success, returns its index. Otherwise, returns `None`
> > + /// to indicate that a `grow_alloc` is needed.
> > + #[inline]
> > + pub fn acquire_next_id(&mut self, offset: usize) -> Option<usize> {
> > + match self.map.next_zero_bit(offset) {
> > + res @ Some(nr) => {
> > + self.map.set_bit(nr);
> > + res
> > + }
> > + None => None,
> > + }
> > + }
> > +
> > + /// Releases an ID.
> > + #[inline]
> > + pub fn release_id(&mut self, id: usize) {
> > + self.map.clear_bit(id);
> > + }
> > +}
> > diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
> > index 9f675c0841e6..d77a27bee388 100644
> > --- a/rust/kernel/lib.rs
> > +++ b/rust/kernel/lib.rs
> > @@ -51,6 +51,7 @@
> > #[cfg(CONFIG_RUST_FW_LOADER_ABSTRACTIONS)]
> > pub mod firmware;
> > pub mod fs;
> > +pub mod id_pool;
> > pub mod init;
> > pub mod io;
> > pub mod ioctl;
> > --
> > 2.49.0.395.g12beb8f557-goog
© 2016 - 2025 Red Hat, Inc.