Add a simple dma coherent allocator rust abstraction. Based on
Andreas Hindborg's dma abstractions from the rnvme driver, which
was also based on earlier work by Wedson Almeida Filho.
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Signed-off-by: Abdiel Janulgue <abdiel.janulgue@gmail.com>
---
rust/bindings/bindings_helper.h | 1 +
rust/kernel/dma.rs | 387 ++++++++++++++++++++++++++++++++
rust/kernel/lib.rs | 1 +
3 files changed, 389 insertions(+)
create mode 100644 rust/kernel/dma.rs
diff --git a/rust/bindings/bindings_helper.h b/rust/bindings/bindings_helper.h
index ae39fc18a8bf..ccb988340df6 100644
--- a/rust/bindings/bindings_helper.h
+++ b/rust/bindings/bindings_helper.h
@@ -12,6 +12,7 @@
#include <linux/blkdev.h>
#include <linux/cred.h>
#include <linux/device/faux.h>
+#include <linux/dma-mapping.h>
#include <linux/errname.h>
#include <linux/ethtool.h>
#include <linux/file.h>
diff --git a/rust/kernel/dma.rs b/rust/kernel/dma.rs
new file mode 100644
index 000000000000..9d00f9c49f47
--- /dev/null
+++ b/rust/kernel/dma.rs
@@ -0,0 +1,387 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Direct memory access (DMA).
+//!
+//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
+
+use crate::{
+ bindings, build_assert,
+ device::Device,
+ error::code::*,
+ error::Result,
+ transmute::{AsBytes, FromBytes},
+ types::ARef,
+};
+
+/// Possible attributes associated with a DMA mapping.
+///
+/// They can be combined with the operators `|`, `&`, and `!`.
+///
+/// Values can be used from the [`attrs`] module.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::device::Device;
+/// use kernel::dma::{attrs::*, CoherentAllocation};
+///
+/// # fn test(dev: &Device) -> Result {
+/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
+/// let c: CoherentAllocation<u64> =
+/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
+/// # Ok::<(), Error>(()) }
+/// ```
+#[derive(Clone, Copy, PartialEq)]
+#[repr(transparent)]
+pub struct Attrs(u32);
+
+impl Attrs {
+ /// Get the raw representation of this attribute.
+ pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
+ self.0 as _
+ }
+
+ /// Check whether `flags` is contained in `self`.
+ pub fn contains(self, flags: Attrs) -> bool {
+ (self & flags) == flags
+ }
+}
+
+impl core::ops::BitOr for Attrs {
+ type Output = Self;
+ fn bitor(self, rhs: Self) -> Self::Output {
+ Self(self.0 | rhs.0)
+ }
+}
+
+impl core::ops::BitAnd for Attrs {
+ type Output = Self;
+ fn bitand(self, rhs: Self) -> Self::Output {
+ Self(self.0 & rhs.0)
+ }
+}
+
+impl core::ops::Not for Attrs {
+ type Output = Self;
+ fn not(self) -> Self::Output {
+ Self(!self.0)
+ }
+}
+
+/// DMA mapping attributes.
+pub mod attrs {
+ use super::Attrs;
+
+ /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
+ /// and writes may pass each other.
+ pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
+
+ /// Specifies that writes to the mapping may be buffered to improve performance.
+ pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
+
+ /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
+ pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
+
+ /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
+ /// that it has been already transferred to 'device' domain.
+ pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
+
+ /// Forces contiguous allocation of the buffer in physical memory.
+ pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
+
+ /// This is a hint to the DMA-mapping subsystem that it's probably not worth the time to try
+ /// to allocate memory to in a way that gives better TLB efficiency.
+ pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
+
+ /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
+ /// __GFP_NOWARN).
+ pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
+
+ /// Used to indicate that the buffer is fully accessible at an elevated privilege level (and
+ /// ideally inaccessible or at least read-only at lesser-privileged levels).
+ pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
+}
+
+/// An abstraction of the `dma_alloc_coherent` API.
+///
+/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
+/// large consistent DMA regions.
+///
+/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
+/// processor's virtual address space) and the device address which can be given to the device
+/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
+/// is dropped.
+///
+/// # Invariants
+///
+/// For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
+/// to an allocated region of consistent memory and `dma_handle` is the DMA address base of
+/// the region.
+// TODO
+//
+// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
+// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
+// that device resources can never survive device unbind.
+//
+// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
+// allocation from surviving device unbind; it would require RCU read side critical sections to
+// access the memory, which may require subsequent unnecessary copies.
+//
+// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
+// entire `CoherentAllocation` including the allocated memory itself.
+pub struct CoherentAllocation<T: AsBytes + FromBytes> {
+ dev: ARef<Device>,
+ dma_handle: bindings::dma_addr_t,
+ count: usize,
+ cpu_addr: *mut T,
+ dma_attrs: Attrs,
+}
+
+impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
+ /// Allocates a region of `size_of::<T> * count` of consistent memory.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::device::Device;
+ /// use kernel::dma::{attrs::*, CoherentAllocation};
+ ///
+ /// # fn test(dev: &Device) -> Result {
+ /// let c: CoherentAllocation<u64> =
+ /// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
+ /// # Ok::<(), Error>(()) }
+ /// ```
+ pub fn alloc_attrs(
+ dev: &Device,
+ count: usize,
+ gfp_flags: kernel::alloc::Flags,
+ dma_attrs: Attrs,
+ ) -> Result<CoherentAllocation<T>> {
+ build_assert!(
+ core::mem::size_of::<T>() > 0,
+ "It doesn't make sense for the allocated type to be a ZST"
+ );
+
+ let size = count
+ .checked_mul(core::mem::size_of::<T>())
+ .ok_or(EOVERFLOW)?;
+ let mut dma_handle = 0;
+ // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
+ let ret = unsafe {
+ bindings::dma_alloc_attrs(
+ dev.as_raw(),
+ size,
+ &mut dma_handle,
+ gfp_flags.as_raw(),
+ dma_attrs.as_raw(),
+ )
+ };
+ if ret.is_null() {
+ return Err(ENOMEM);
+ }
+ // INVARIANT: We just successfully allocated a coherent region which is accessible for
+ // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
+ // to the device.
+ Ok(Self {
+ dev: dev.into(),
+ dma_handle,
+ count,
+ cpu_addr: ret as *mut T,
+ dma_attrs,
+ })
+ }
+
+ /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
+ /// `dma_attrs` is 0 by default.
+ pub fn alloc_coherent(
+ dev: &Device,
+ count: usize,
+ gfp_flags: kernel::alloc::Flags,
+ ) -> Result<CoherentAllocation<T>> {
+ CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
+ }
+
+ /// Returns the base address to the allocated region in the CPU's virtual address space.
+ pub fn start_ptr(&self) -> *const T {
+ self.cpu_addr
+ }
+
+ /// Returns the base address to the allocated region in the CPU's virtual address space as
+ /// a mutable pointer.
+ pub fn start_ptr_mut(&mut self) -> *mut T {
+ self.cpu_addr
+ }
+
+ /// Returns a DMA handle which may given to the device as the DMA address base of
+ /// the region.
+ pub fn dma_handle(&self) -> bindings::dma_addr_t {
+ self.dma_handle
+ }
+
+ /// Returns a pointer to an element from the region with bounds checking. `offset` is in
+ /// units of `T`, not the number of bytes.
+ ///
+ /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
+ #[doc(hidden)]
+ pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
+ if offset >= self.count {
+ return Err(EINVAL);
+ }
+ // SAFETY:
+ // - The pointer is valid due to type invariant on `CoherentAllocation`
+ // and we've just checked that the range and index is within bounds.
+ // - `offset` can't overflow since it is smaller than `self.count` and we've checked
+ // that `self.count` won't overflow early in the constructor.
+ Ok(unsafe { self.cpu_addr.add(offset) })
+ }
+
+ /// Reads the value of `field` and ensures that its type is [`FromBytes`].
+ ///
+ /// # Safety
+ ///
+ /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
+ /// validated beforehand.
+ ///
+ /// Public but hidden since it should only be used from [`dma_read`] macro.
+ #[doc(hidden)]
+ pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
+ // SAFETY:
+ // - By the safety requirements field is valid.
+ // - Using read_volatile() here is not sound as per the usual rules, the usage here is
+ // a special exception with the following notes in place. When dealing with a potential
+ // race from a hardware or code outside kernel (e.g. user-space program), we need that
+ // read on a valid memory is not UB. Currently read_volatile() is used for this, and the
+ // rationale behind is that it should generate the same code as READ_ONCE() which the
+ // kernel already relies on to avoid UB on data races. Note that the usage of
+ // read_volatile() is limited to this particular case, it cannot be used to prevent
+ // the UB caused by racing between two kernel functions nor do they provide atomicity.
+ unsafe { field.read_volatile() }
+ }
+
+ /// Writes a value to `field` and ensures that its type is [`AsBytes`].
+ ///
+ /// # Safety
+ ///
+ /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
+ /// validated beforehand.
+ ///
+ /// Public but hidden since it should only be used from [`dma_write`] macro.
+ #[doc(hidden)]
+ pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
+ // SAFETY:
+ // - By the safety requirements field is valid.
+ // - Using write_volatile() here is not sound as per the usual rules, the usage here is
+ // a special exception with the following notes in place. When dealing with a potential
+ // race from a hardware or code outside kernel (e.g. user-space program), we need that
+ // write on a valid memory is not UB. Currently write_volatile() is used for this, and the
+ // rationale behind is that it should generate the same code as WRITE_ONCE() which the
+ // kernel already relies on to avoid UB on data races. Note that the usage of
+ // write_volatile() is limited to this particular case, it cannot be used to prevent
+ // the UB caused by racing between two kernel functions nor do they provide atomicity.
+ unsafe { field.write_volatile(val) }
+ }
+}
+
+/// Note that the device configured to do DMA must be halted before this object is dropped.
+impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
+ fn drop(&mut self) {
+ let size = self.count * core::mem::size_of::<T>();
+ // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
+ // The cpu address, and the dma handle are valid due to the type invariants on
+ // `CoherentAllocation`.
+ unsafe {
+ bindings::dma_free_attrs(
+ self.dev.as_raw(),
+ size,
+ self.cpu_addr as _,
+ self.dma_handle,
+ self.dma_attrs.as_raw(),
+ )
+ }
+ }
+}
+
+/// Reads a field of an item from an allocated region of structs.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::device::Device;
+/// use kernel::dma::{attrs::*, CoherentAllocation};
+///
+/// struct MyStruct { field: u32, }
+///
+/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
+/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
+/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
+/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
+///
+/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
+/// let whole = kernel::dma_read!(alloc[2]);
+/// let field = kernel::dma_read!(alloc[1].field);
+/// # Ok::<(), Error>(()) }
+/// ```
+#[macro_export]
+macro_rules! dma_read {
+ ($dma:expr, $idx: expr, $($field:tt)*) => {{
+ let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
+ // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
+ // dereferenced. The compiler also further validates the expression on whether `field`
+ // is a member of `item` when expanded by the macro.
+ unsafe {
+ let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
+ $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
+ }
+ }};
+ ($dma:ident [ $idx:expr ] $($field:tt)* ) => {
+ $crate::dma_read!($dma, $idx, $($field)*);
+ };
+ ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
+ $crate::dma_read!($($dma).*, $idx, $($field)*);
+ };
+}
+
+/// Writes to a field of an item from an allocated region of structs.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::device::Device;
+/// use kernel::dma::{attrs::*, CoherentAllocation};
+///
+/// struct MyStruct { member: u32, }
+///
+/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
+/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
+/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
+/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
+///
+/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
+/// kernel::dma_write!(alloc[2].member = 0xf);
+/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
+/// # Ok::<(), Error>(()) }
+/// ```
+#[macro_export]
+macro_rules! dma_write {
+ ($dma:ident [ $idx:expr ] $($field:tt)*) => {{
+ $crate::dma_write!($dma, $idx, $($field)*);
+ }};
+ ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
+ $crate::dma_write!($($dma).*, $idx, $($field)*);
+ }};
+ ($dma:expr, $idx: expr, = $val:expr) => {
+ let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
+ // SAFETY: `item_from_index` ensures that `item` is always a valid item.
+ unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
+ };
+ ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
+ let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
+ // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
+ // dereferenced. The compiler also further validates the expression on whether `field`
+ // is a member of `item` when expanded by the macro.
+ unsafe {
+ let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
+ $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
+ }
+ };
+}
diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
index c92497c7c655..001374a96d66 100644
--- a/rust/kernel/lib.rs
+++ b/rust/kernel/lib.rs
@@ -44,6 +44,7 @@
pub mod device;
pub mod device_id;
pub mod devres;
+pub mod dma;
pub mod driver;
pub mod error;
pub mod faux;
--
2.43.0
"Abdiel Janulgue" <abdiel.janulgue@gmail.com> writes:
[...]
> +/// Possible attributes associated with a DMA mapping.
> +///
> +/// They can be combined with the operators `|`, `&`, and `!`.
> +///
> +/// Values can be used from the [`attrs`] module.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// use kernel::device::Device;
> +/// use kernel::dma::{attrs::*, CoherentAllocation};
> +///
> +/// # fn test(dev: &Device) -> Result {
> +/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
> +/// let c: CoherentAllocation<u64> =
> +/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
> +/// # Ok::<(), Error>(()) }
> +/// ```
> +#[derive(Clone, Copy, PartialEq)]
> +#[repr(transparent)]
> +pub struct Attrs(u32);
> +
> +impl Attrs {
> + /// Get the raw representation of this attribute.
> + pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
> + self.0 as _
> + }
OT: I wonder why we do not have `usize: From<u32>`? It seems like this
should be fine, even on 32 bit systems?
> +
> + /// Check whether `flags` is contained in `self`.
> + pub fn contains(self, flags: Attrs) -> bool {
> + (self & flags) == flags
> + }
> +}
> +
> +impl core::ops::BitOr for Attrs {
> + type Output = Self;
> + fn bitor(self, rhs: Self) -> Self::Output {
> + Self(self.0 | rhs.0)
> + }
> +}
> +
> +impl core::ops::BitAnd for Attrs {
> + type Output = Self;
> + fn bitand(self, rhs: Self) -> Self::Output {
> + Self(self.0 & rhs.0)
> + }
> +}
> +
> +impl core::ops::Not for Attrs {
> + type Output = Self;
> + fn not(self) -> Self::Output {
> + Self(!self.0)
> + }
> +}
> +
> +/// DMA mapping attributes.
> +pub mod attrs {
> + use super::Attrs;
> +
> + /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
> + /// and writes may pass each other.
> + pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
> +
> + /// Specifies that writes to the mapping may be buffered to improve performance.
> + pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
> +
> + /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
> + pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
> +
> + /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
> + /// that it has been already transferred to 'device' domain.
> + pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
> +
> + /// Forces contiguous allocation of the buffer in physical memory.
> + pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
> +
> + /// This is a hint to the DMA-mapping subsystem that it's probably not worth the time to try
> + /// to allocate memory to in a way that gives better TLB efficiency.
The wording of in the other doc comments is different than this one and
the two next ones. Consider aligning them:
Hints the DMA-mapping subsystem that ...
> + pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
> +
> + /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
> + /// __GFP_NOWARN).
Tells the DMA-mapping subsystem ...
> + pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
> +
> + /// Used to indicate that the buffer is fully accessible at an elevated privilege level (and
> + /// ideally inaccessible or at least read-only at lesser-privileged levels).
Indicates that the buffer ...
> + pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
> +}
> +
> +/// An abstraction of the `dma_alloc_coherent` API.
> +///
> +/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
> +/// large consistent DMA regions.
I think it would be nice to have a description of what a coherent DMA
region is here. From Documentation/core-api/dma-api.rst:
Consistent memory is memory for which a write by either the device or
the processor can immediately be read by the processor or device
without having to worry about caching effects. (You may however need
to make sure to flush the processor's write buffers before telling
devices to read that memory.)
I think consistent and coherent are used interchangeably in the kernel.
If so, can we settle on just one of the terms in the rust code?
> +///
> +/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
> +/// processor's virtual address space) and the device address which can be given to the device
> +/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
> +/// is dropped.
> +///
> +/// # Invariants
> +///
> +/// For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
> +/// to an allocated region of consistent memory and `dma_handle` is the DMA address base of
> +/// the region.
> +// TODO
> +//
> +// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
> +// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
> +// that device resources can never survive device unbind.
> +//
> +// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
> +// allocation from surviving device unbind; it would require RCU read side critical sections to
> +// access the memory, which may require subsequent unnecessary copies.
> +//
> +// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
> +// entire `CoherentAllocation` including the allocated memory itself.
Looking forward to seeing this solution.
Best regards,
Andreas Hindborg
Hi Andreas, > > I think consistent and coherent are used interchangeably in the kernel. > If so, can we settle on just one of the terms in the rust code? > I’d say let’s keep the `coherent` nomenclature. It immediately shows that dma_alloc_coherent() is being used. — Daniel
On Tue, Mar 18, 2025 at 2:13 PM Andreas Hindborg <a.hindborg@kernel.org> wrote: > > The wording of in the other doc comments is different than this one and > the two next ones. Consider aligning them: > > Hints the DMA-mapping subsystem that ... > > Tells the DMA-mapping subsystem ... > > Indicates that the buffer ... These come from the C side and are copy-pasted, so I suspect that was the reason -- they may want to have them in sync, so I didn't touch them. > I think it would be nice to have a description of what a coherent DMA > region is here. From Documentation/core-api/dma-api.rst: > > Consistent memory is memory for which a write by either the device or > the processor can immediately be read by the processor or device > without having to worry about caching effects. (You may however need > to make sure to flush the processor's write buffers before telling > devices to read that memory.) > > I think consistent and coherent are used interchangeably in the kernel. > If so, can we settle on just one of the terms in the rust code? Abdiel has the diff ready for this, so he may send the patch (or you), but for the moment I decided to minimize changes -- up to the maintainers/reviewers now :) > > +// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness Nit: I think this should have a space after e.g. or a comma -- I didn't touch it, and it is a TODO anyway, but before I forget I mention it here. Thanks! Cheers, Miguel
"Miguel Ojeda" <miguel.ojeda.sandonis@gmail.com> writes: > On Tue, Mar 18, 2025 at 2:13 PM Andreas Hindborg <a.hindborg@kernel.org> wrote: >> >> The wording of in the other doc comments is different than this one and >> the two next ones. Consider aligning them: >> >> Hints the DMA-mapping subsystem that ... >> >> Tells the DMA-mapping subsystem ... >> >> Indicates that the buffer ... > > These come from the C side and are copy-pasted, so I suspect that was > the reason -- they may want to have them in sync, so I didn't touch > them. Since this particular doc discussion is about wording and not semantics, I won't object too much. However, writing the docs for Rust is a very good chance to get _better_ docs and in general I would encourage taking advantage of that. Best regards, Andreas Hindborg
On Tue, Mar 18, 2025 at 02:07:40PM +0100, Andreas Hindborg wrote:
> "Abdiel Janulgue" <abdiel.janulgue@gmail.com> writes:
>
> [...]
>
> > +/// Possible attributes associated with a DMA mapping.
> > +///
> > +/// They can be combined with the operators `|`, `&`, and `!`.
> > +///
> > +/// Values can be used from the [`attrs`] module.
> > +///
> > +/// # Examples
> > +///
> > +/// ```
> > +/// use kernel::device::Device;
> > +/// use kernel::dma::{attrs::*, CoherentAllocation};
> > +///
> > +/// # fn test(dev: &Device) -> Result {
> > +/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
> > +/// let c: CoherentAllocation<u64> =
> > +/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
> > +/// # Ok::<(), Error>(()) }
> > +/// ```
> > +#[derive(Clone, Copy, PartialEq)]
> > +#[repr(transparent)]
> > +pub struct Attrs(u32);
> > +
> > +impl Attrs {
> > + /// Get the raw representation of this attribute.
> > + pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
> > + self.0 as _
> > + }
>
> OT: I wonder why we do not have `usize: From<u32>`? It seems like this
> should be fine, even on 32 bit systems?
usize only implements From<unn> when it would work on all concievable
platforms, so it's missing for u32 due to 16-bit platforms.
Alice
© 2016 - 2025 Red Hat, Inc.