Update events from v28 to v29.
Update TMA metrics from 4.8 to 5.01.
Bring in the event updates v29:
https://github.com/intel/perfmon/commit/71dbf03aba964f79fb096c9ded385c8a486a99b3
The TMA 5.01 update is from (with subsequent fixes):
https://github.com/intel/perfmon/commit/1d72913b2d938781fb28f3cc3507aaec5c22d782
Co-authored-by: Caleb Biggers <caleb.biggers@intel.com>
Signed-off-by: Ian Rogers <irogers@google.com>
---
.../arch/x86/haswellx/hsx-metrics.json | 296 ++++++++++--------
.../arch/x86/haswellx/metricgroups.json | 5 +
.../arch/x86/haswellx/uncore-cache.json | 28 +-
.../x86/haswellx/uncore-interconnect.json | 38 +--
tools/perf/pmu-events/arch/x86/mapfile.csv | 2 +-
5 files changed, 191 insertions(+), 178 deletions(-)
diff --git a/tools/perf/pmu-events/arch/x86/haswellx/hsx-metrics.json b/tools/perf/pmu-events/arch/x86/haswellx/hsx-metrics.json
index 8f2ba3391e35..1a05b74be575 100644
--- a/tools/perf/pmu-events/arch/x86/haswellx/hsx-metrics.json
+++ b/tools/perf/pmu-events/arch/x86/haswellx/hsx-metrics.json
@@ -55,7 +55,7 @@
"MetricName": "UNCORE_FREQ"
},
{
- "BriefDescription": "Cycles per instruction retired; indicating how much time each executed instruction took; in units of cycles.",
+ "BriefDescription": "Cycles per instruction retired; indicating how much time each executed instruction took; in units of cycles",
"MetricExpr": "CPU_CLK_UNHALTED.THREAD / INST_RETIRED.ANY",
"MetricName": "cpi",
"ScaleUnit": "1per_instr"
@@ -76,24 +76,24 @@
"BriefDescription": "Ratio of number of completed page walks (for all page sizes) caused by demand data loads to the total number of completed instructions",
"MetricExpr": "DTLB_LOAD_MISSES.WALK_COMPLETED / INST_RETIRED.ANY",
"MetricName": "dtlb_load_mpi",
- "PublicDescription": "Ratio of number of completed page walks (for all page sizes) caused by demand data loads to the total number of completed instructions. This implies it missed in the DTLB and further levels of TLB.",
+ "PublicDescription": "Ratio of number of completed page walks (for all page sizes) caused by demand data loads to the total number of completed instructions. This implies it missed in the DTLB and further levels of TLB",
"ScaleUnit": "1per_instr"
},
{
"BriefDescription": "Ratio of number of completed page walks (for all page sizes) caused by demand data stores to the total number of completed instructions",
"MetricExpr": "DTLB_STORE_MISSES.WALK_COMPLETED / INST_RETIRED.ANY",
"MetricName": "dtlb_store_mpi",
- "PublicDescription": "Ratio of number of completed page walks (for all page sizes) caused by demand data stores to the total number of completed instructions. This implies it missed in the DTLB and further levels of TLB.",
+ "PublicDescription": "Ratio of number of completed page walks (for all page sizes) caused by demand data stores to the total number of completed instructions. This implies it missed in the DTLB and further levels of TLB",
"ScaleUnit": "1per_instr"
},
{
- "BriefDescription": "Bandwidth of IO reads that are initiated by end device controllers that are requesting memory from the CPU.",
+ "BriefDescription": "Bandwidth of IO reads that are initiated by end device controllers that are requesting memory from the CPU",
"MetricExpr": "cbox@UNC_C_TOR_INSERTS.OPCODE\\,filter_opc\\=0x19e@ * 64 / 1e6 / duration_time",
"MetricName": "io_bandwidth_read",
"ScaleUnit": "1MB/s"
},
{
- "BriefDescription": "Bandwidth of IO writes that are initiated by end device controllers that are writing memory to the CPU.",
+ "BriefDescription": "Bandwidth of IO writes that are initiated by end device controllers that are writing memory to the CPU",
"MetricExpr": "cbox@UNC_C_TOR_INSERTS.OPCODE\\,filter_opc\\=0x1c8\\,filter_tid\\=0x3e@ * 64 / 1e6 / duration_time",
"MetricName": "io_bandwidth_write",
"ScaleUnit": "1MB/s"
@@ -102,14 +102,14 @@
"BriefDescription": "Ratio of number of completed page walks (for 2 megabyte and 4 megabyte page sizes) caused by a code fetch to the total number of completed instructions",
"MetricExpr": "ITLB_MISSES.WALK_COMPLETED_2M_4M / INST_RETIRED.ANY",
"MetricName": "itlb_large_page_mpi",
- "PublicDescription": "Ratio of number of completed page walks (for 2 megabyte and 4 megabyte page sizes) caused by a code fetch to the total number of completed instructions. This implies it missed in the Instruction Translation Lookaside Buffer (ITLB) and further levels of TLB.",
+ "PublicDescription": "Ratio of number of completed page walks (for 2 megabyte and 4 megabyte page sizes) caused by a code fetch to the total number of completed instructions. This implies it missed in the Instruction Translation Lookaside Buffer (ITLB) and further levels of TLB",
"ScaleUnit": "1per_instr"
},
{
"BriefDescription": "Ratio of number of completed page walks (for all page sizes) caused by a code fetch to the total number of completed instructions",
"MetricExpr": "ITLB_MISSES.WALK_COMPLETED / INST_RETIRED.ANY",
"MetricName": "itlb_mpi",
- "PublicDescription": "Ratio of number of completed page walks (for all page sizes) caused by a code fetch to the total number of completed instructions. This implies it missed in the ITLB (Instruction TLB) and further levels of TLB.",
+ "PublicDescription": "Ratio of number of completed page walks (for all page sizes) caused by a code fetch to the total number of completed instructions. This implies it missed in the ITLB (Instruction TLB) and further levels of TLB",
"ScaleUnit": "1per_instr"
},
{
@@ -209,13 +209,13 @@
"ScaleUnit": "1MB/s"
},
{
- "BriefDescription": "Memory read that miss the last level cache (LLC) addressed to local DRAM as a percentage of total memory read accesses, does not include LLC prefetches.",
+ "BriefDescription": "Memory read that miss the last level cache (LLC) addressed to local DRAM as a percentage of total memory read accesses, does not include LLC prefetches",
"MetricExpr": "cbox@UNC_C_TOR_INSERTS.MISS_LOCAL_OPCODE\\,filter_opc\\=0x182@ / (cbox@UNC_C_TOR_INSERTS.MISS_LOCAL_OPCODE\\,filter_opc\\=0x182@ + cbox@UNC_C_TOR_INSERTS.MISS_REMOTE_OPCODE\\,filter_opc\\=0x182@)",
"MetricName": "numa_reads_addressed_to_local_dram",
"ScaleUnit": "100%"
},
{
- "BriefDescription": "Memory reads that miss the last level cache (LLC) addressed to remote DRAM as a percentage of total memory read accesses, does not include LLC prefetches.",
+ "BriefDescription": "Memory reads that miss the last level cache (LLC) addressed to remote DRAM as a percentage of total memory read accesses, does not include LLC prefetches",
"MetricExpr": "cbox@UNC_C_TOR_INSERTS.MISS_REMOTE_OPCODE\\,filter_opc\\=0x182@ / (cbox@UNC_C_TOR_INSERTS.MISS_LOCAL_OPCODE\\,filter_opc\\=0x182@ + cbox@UNC_C_TOR_INSERTS.MISS_REMOTE_OPCODE\\,filter_opc\\=0x182@)",
"MetricName": "numa_reads_addressed_to_remote_dram",
"ScaleUnit": "100%"
@@ -276,12 +276,12 @@
"MetricExpr": "LD_BLOCKS_PARTIAL.ADDRESS_ALIAS / tma_info_thread_clks",
"MetricGroup": "TopdownL4;tma_L4_group;tma_l1_bound_group",
"MetricName": "tma_4k_aliasing",
- "MetricThreshold": "tma_4k_aliasing > 0.2 & (tma_l1_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric estimates how often memory load accesses were aliased by preceding stores (in program order) with a 4K address offset. False match is possible; which incur a few cycles load re-issue. However; the short re-issue duration is often hidden by the out-of-order core and HW optimizations; hence a user may safely ignore a high value of this metric unless it manages to propagate up into parent nodes of the hierarchy (e.g. to L1_Bound).",
+ "MetricThreshold": "tma_4k_aliasing > 0.2 & tma_l1_bound > 0.1 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates how often memory load accesses were aliased by preceding stores (in program order) with a 4K address offset. False match is possible; which incur a few cycles load re-issue. However; the short re-issue duration is often hidden by the out-of-order core and HW optimizations; hence a user may safely ignore a high value of this metric unless it manages to propagate up into parent nodes of the hierarchy (e.g. to L1_Bound)",
"ScaleUnit": "100%"
},
{
- "BriefDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution ports for ALU operations.",
+ "BriefDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution ports for ALU operations",
"MetricConstraint": "NO_GROUP_EVENTS_NMI",
"MetricExpr": "(UOPS_DISPATCHED_PORT.PORT_0 + UOPS_DISPATCHED_PORT.PORT_1 + UOPS_DISPATCHED_PORT.PORT_5 + UOPS_DISPATCHED_PORT.PORT_6) / tma_info_thread_slots",
"MetricGroup": "TopdownL5;tma_L5_group;tma_ports_utilized_3m_group",
@@ -294,8 +294,8 @@
"MetricExpr": "66 * OTHER_ASSISTS.ANY_WB_ASSIST / tma_info_thread_slots",
"MetricGroup": "BvIO;TopdownL4;tma_L4_group;tma_microcode_sequencer_group",
"MetricName": "tma_assists",
- "MetricThreshold": "tma_assists > 0.1 & (tma_microcode_sequencer > 0.05 & tma_heavy_operations > 0.1)",
- "PublicDescription": "This metric estimates fraction of slots the CPU retired uops delivered by the Microcode_Sequencer as a result of Assists. Assists are long sequences of uops that are required in certain corner-cases for operations that cannot be handled natively by the execution pipeline. For example; when working with very small floating point values (so-called Denormals); the FP units are not set up to perform these operations natively. Instead; a sequence of instructions to perform the computation on the Denormals is injected into the pipeline. Since these microcode sequences might be dozens of uops long; Assists can be extremely deleterious to performance and they can be avoided in many cases. Sample with: OTHER_ASSISTS.ANY",
+ "MetricThreshold": "tma_assists > 0.1 & tma_microcode_sequencer > 0.05 & tma_heavy_operations > 0.1",
+ "PublicDescription": "This metric estimates fraction of slots the CPU retired uops delivered by the Microcode_Sequencer as a result of Assists. Assists are long sequences of uops that are required in certain corner-cases for operations that cannot be handled natively by the execution pipeline. For example; when working with very small floating point values (so-called Denormals); the FP units are not set up to perform these operations natively. Instead; a sequence of instructions to perform the computation on the Denormals is injected into the pipeline. Since these microcode sequences might be dozens of uops long; Assists can be extremely deleterious to performance and they can be avoided in many cases. Sample with: OTHER_ASSISTS.ANY_WB_ASSIST",
"ScaleUnit": "100%"
},
{
@@ -306,7 +306,7 @@
"MetricName": "tma_backend_bound",
"MetricThreshold": "tma_backend_bound > 0.2",
"MetricgroupNoGroup": "TopdownL1",
- "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.",
+ "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound",
"ScaleUnit": "100%"
},
{
@@ -316,7 +316,7 @@
"MetricName": "tma_bad_speculation",
"MetricThreshold": "tma_bad_speculation > 0.15",
"MetricgroupNoGroup": "TopdownL1",
- "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.",
+ "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example",
"ScaleUnit": "100%"
},
{
@@ -327,7 +327,7 @@
"MetricName": "tma_branch_mispredicts",
"MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15",
"MetricgroupNoGroup": "TopdownL2",
- "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_bad_spec_branch_misprediction_cost, tma_mispredicts_resteers",
+ "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES",
"ScaleUnit": "100%"
},
{
@@ -335,8 +335,8 @@
"MetricExpr": "12 * (BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT + BACLEARS.ANY) / tma_info_thread_clks",
"MetricGroup": "FetchLat;TopdownL3;tma_L3_group;tma_fetch_latency_group",
"MetricName": "tma_branch_resteers",
- "MetricThreshold": "tma_branch_resteers > 0.05 & (tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15)",
- "PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers. Branch Resteers estimates the Frontend delay in fetching operations from corrected path; following all sorts of miss-predicted branches. For example; branchy code with lots of miss-predictions might get categorized under Branch Resteers. Note the value of this node may overlap with its siblings. Sample with: BR_MISP_RETIRED.ALL_BRANCHES",
+ "MetricThreshold": "tma_branch_resteers > 0.05 & tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15",
+ "PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers. Branch Resteers estimates the Frontend delay in fetching operations from corrected path; following all sorts of miss-predicted branches. For example; branchy code with lots of miss-predictions might get categorized under Branch Resteers. Note the value of this node may overlap with its siblings. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_l3_hit_latency, tma_store_latency",
"ScaleUnit": "100%"
},
{
@@ -345,18 +345,18 @@
"MetricExpr": "max(0, tma_microcode_sequencer - tma_assists)",
"MetricGroup": "TopdownL4;tma_L4_group;tma_microcode_sequencer_group",
"MetricName": "tma_cisc",
- "MetricThreshold": "tma_cisc > 0.1 & (tma_microcode_sequencer > 0.05 & tma_heavy_operations > 0.1)",
- "PublicDescription": "This metric estimates fraction of cycles the CPU retired uops originated from CISC (complex instruction set computer) instruction. A CISC instruction has multiple uops that are required to perform the instruction's functionality as in the case of read-modify-write as an example. Since these instructions require multiple uops they may or may not imply sub-optimal use of machine resources.",
+ "MetricThreshold": "tma_cisc > 0.1 & tma_microcode_sequencer > 0.05 & tma_heavy_operations > 0.1",
+ "PublicDescription": "This metric estimates fraction of cycles the CPU retired uops originated from CISC (complex instruction set computer) instruction. A CISC instruction has multiple uops that are required to perform the instruction's functionality as in the case of read-modify-write as an example. Since these instructions require multiple uops they may or may not imply sub-optimal use of machine resources",
"ScaleUnit": "100%"
},
{
"BriefDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to contested accesses",
"MetricConstraint": "NO_GROUP_EVENTS",
"MetricExpr": "(60 * (MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM * (1 + MEM_LOAD_UOPS_RETIRED.HIT_LFB / (MEM_LOAD_UOPS_RETIRED.L2_HIT + MEM_LOAD_UOPS_RETIRED.L3_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS + MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD))) + 43 * (MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS * (1 + MEM_LOAD_UOPS_RETIRED.HIT_LFB / (MEM_LOAD_UOPS_RETIRED.L2_HIT + MEM_LOAD_UOPS_RETIRED.L3_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS + MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD)))) / tma_info_thread_clks",
- "MetricGroup": "BvMS;DataSharing;Offcore;Snoop;TopdownL4;tma_L4_group;tma_issueSyncxn;tma_l3_bound_group",
+ "MetricGroup": "BvMS;DataSharing;LockCont;Offcore;Snoop;TopdownL4;tma_L4_group;tma_issueSyncxn;tma_l3_bound_group",
"MetricName": "tma_contested_accesses",
- "MetricThreshold": "tma_contested_accesses > 0.05 & (tma_l3_bound > 0.05 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to contested accesses. Contested accesses occur when data written by one Logical Processor are read by another Logical Processor on a different Physical Core. Examples of contested accesses include synchronizations such as locks; true data sharing such as modified locked variables; and false sharing. Sample with: MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM_PS;MEM_LOAD_L3_HIT_RETIRED.XSNP_MISS_PS. Related metrics: tma_data_sharing, tma_false_sharing, tma_machine_clears, tma_remote_cache",
+ "MetricThreshold": "tma_contested_accesses > 0.05 & tma_l3_bound > 0.05 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to contested accesses. Contested accesses occur when data written by one Logical Processor are read by another Logical Processor on a different Physical Core. Examples of contested accesses include synchronizations such as locks; true data sharing such as modified locked variables; and false sharing. Sample with: MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM, MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS. Related metrics: tma_data_sharing, tma_false_sharing, tma_machine_clears, tma_remote_cache",
"ScaleUnit": "100%"
},
{
@@ -367,7 +367,7 @@
"MetricName": "tma_core_bound",
"MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2",
"MetricgroupNoGroup": "TopdownL2",
- "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).",
+ "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations)",
"ScaleUnit": "100%"
},
{
@@ -376,8 +376,8 @@
"MetricExpr": "43 * (MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT * (1 + MEM_LOAD_UOPS_RETIRED.HIT_LFB / (MEM_LOAD_UOPS_RETIRED.L2_HIT + MEM_LOAD_UOPS_RETIRED.L3_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS + MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD))) / tma_info_thread_clks",
"MetricGroup": "BvMS;Offcore;Snoop;TopdownL4;tma_L4_group;tma_issueSyncxn;tma_l3_bound_group",
"MetricName": "tma_data_sharing",
- "MetricThreshold": "tma_data_sharing > 0.05 & (tma_l3_bound > 0.05 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to data-sharing accesses. Data shared by multiple Logical Processors (even just read shared) may cause increased access latency due to cache coherency. Excessive data sharing can drastically harm multithreaded performance. Sample with: MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT_PS. Related metrics: tma_contested_accesses, tma_false_sharing, tma_machine_clears, tma_remote_cache",
+ "MetricThreshold": "tma_data_sharing > 0.05 & tma_l3_bound > 0.05 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to data-sharing accesses. Data shared by multiple Logical Processors (even just read shared) may cause increased access latency due to cache coherency. Excessive data sharing can drastically harm multithreaded performance. Sample with: MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT. Related metrics: tma_contested_accesses, tma_false_sharing, tma_machine_clears, tma_remote_cache",
"ScaleUnit": "100%"
},
{
@@ -385,7 +385,7 @@
"MetricExpr": "10 * ARITH.DIVIDER_UOPS / tma_info_core_core_clks",
"MetricGroup": "BvCB;TopdownL3;tma_L3_group;tma_core_bound_group",
"MetricName": "tma_divider",
- "MetricThreshold": "tma_divider > 0.2 & (tma_core_bound > 0.1 & tma_backend_bound > 0.2)",
+ "MetricThreshold": "tma_divider > 0.2 & tma_core_bound > 0.1 & tma_backend_bound > 0.2",
"PublicDescription": "This metric represents fraction of cycles where the Divider unit was active. Divide and square root instructions are performed by the Divider unit and can take considerably longer latency than integer or Floating Point addition; subtraction; or multiplication. Sample with: ARITH.DIVIDER_UOPS",
"ScaleUnit": "100%"
},
@@ -395,8 +395,8 @@
"MetricExpr": "(1 - MEM_LOAD_UOPS_RETIRED.L3_HIT / (MEM_LOAD_UOPS_RETIRED.L3_HIT + 7 * MEM_LOAD_UOPS_RETIRED.L3_MISS)) * CYCLE_ACTIVITY.STALLS_L2_PENDING / tma_info_thread_clks",
"MetricGroup": "MemoryBound;TmaL3mem;TopdownL3;tma_L3_group;tma_memory_bound_group",
"MetricName": "tma_dram_bound",
- "MetricThreshold": "tma_dram_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2)",
- "PublicDescription": "This metric estimates how often the CPU was stalled on accesses to external memory (DRAM) by loads. Better caching can improve the latency and increase performance. Sample with: MEM_LOAD_UOPS_RETIRED.L3_MISS_PS",
+ "MetricThreshold": "tma_dram_bound > 0.1 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates how often the CPU was stalled on accesses to external memory (DRAM) by loads. Better caching can improve the latency and increase performance. Sample with: MEM_LOAD_UOPS_RETIRED.L3_MISS",
"ScaleUnit": "100%"
},
{
@@ -405,7 +405,7 @@
"MetricGroup": "DSB;FetchBW;TopdownL3;tma_L3_group;tma_fetch_bandwidth_group",
"MetricName": "tma_dsb",
"MetricThreshold": "tma_dsb > 0.15 & tma_fetch_bandwidth > 0.2",
- "PublicDescription": "This metric represents Core fraction of cycles in which CPU was likely limited due to DSB (decoded uop cache) fetch pipeline. For example; inefficient utilization of the DSB cache structure or bank conflict when reading from it; are categorized here.",
+ "PublicDescription": "This metric represents Core fraction of cycles in which CPU was likely limited due to DSB (decoded uop cache) fetch pipeline. For example; inefficient utilization of the DSB cache structure or bank conflict when reading from it; are categorized here",
"ScaleUnit": "100%"
},
{
@@ -413,7 +413,7 @@
"MetricExpr": "DSB2MITE_SWITCHES.PENALTY_CYCLES / tma_info_thread_clks",
"MetricGroup": "DSBmiss;FetchLat;TopdownL3;tma_L3_group;tma_fetch_latency_group;tma_issueFB",
"MetricName": "tma_dsb_switches",
- "MetricThreshold": "tma_dsb_switches > 0.05 & (tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15)",
+ "MetricThreshold": "tma_dsb_switches > 0.05 & tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15",
"PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to switches from DSB to MITE pipelines. The DSB (decoded i-cache) is a Uop Cache where the front-end directly delivers Uops (micro operations) avoiding heavy x86 decoding. The DSB pipeline has shorter latency and delivered higher bandwidth than the MITE (legacy instruction decode pipeline). Switching between the two pipelines can cause penalties hence this metric measures the exposed penalty. Related metrics: tma_fetch_bandwidth, tma_info_frontend_dsb_coverage, tma_info_inst_mix_iptb, tma_lcp",
"ScaleUnit": "100%"
},
@@ -422,8 +422,8 @@
"MetricExpr": "(8 * DTLB_LOAD_MISSES.STLB_HIT + DTLB_LOAD_MISSES.WALK_DURATION) / tma_info_thread_clks",
"MetricGroup": "BvMT;MemoryTLB;TopdownL4;tma_L4_group;tma_issueTLB;tma_l1_bound_group",
"MetricName": "tma_dtlb_load",
- "MetricThreshold": "tma_dtlb_load > 0.1 & (tma_l1_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric roughly estimates the fraction of cycles where the Data TLB (DTLB) was missed by load accesses. TLBs (Translation Look-aside Buffers) are processor caches for recently used entries out of the Page Tables that are used to map virtual- to physical-addresses by the operating system. This metric approximates the potential delay of demand loads missing the first-level data TLB (assuming worst case scenario with back to back misses to different pages). This includes hitting in the second-level TLB (STLB) as well as performing a hardware page walk on an STLB miss. Sample with: MEM_UOPS_RETIRED.STLB_MISS_LOADS_PS. Related metrics: tma_dtlb_store",
+ "MetricThreshold": "tma_dtlb_load > 0.1 & tma_l1_bound > 0.1 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric roughly estimates the fraction of cycles where the Data TLB (DTLB) was missed by load accesses. TLBs (Translation Look-aside Buffers) are processor caches for recently used entries out of the Page Tables that are used to map virtual- to physical-addresses by the operating system. This metric approximates the potential delay of demand loads missing the first-level data TLB (assuming worst case scenario with back to back misses to different pages). This includes hitting in the second-level TLB (STLB) as well as performing a hardware page walk on an STLB miss. Sample with: MEM_UOPS_RETIRED.STLB_MISS_LOADS. Related metrics: tma_dtlb_store",
"ScaleUnit": "100%"
},
{
@@ -431,27 +431,27 @@
"MetricExpr": "(8 * DTLB_STORE_MISSES.STLB_HIT + DTLB_STORE_MISSES.WALK_DURATION) / tma_info_thread_clks",
"MetricGroup": "BvMT;MemoryTLB;TopdownL4;tma_L4_group;tma_issueTLB;tma_store_bound_group",
"MetricName": "tma_dtlb_store",
- "MetricThreshold": "tma_dtlb_store > 0.05 & (tma_store_bound > 0.2 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric roughly estimates the fraction of cycles spent handling first-level data TLB store misses. As with ordinary data caching; focus on improving data locality and reducing working-set size to reduce DTLB overhead. Additionally; consider using profile-guided optimization (PGO) to collocate frequently-used data on the same page. Try using larger page sizes for large amounts of frequently-used data. Sample with: MEM_UOPS_RETIRED.STLB_MISS_STORES_PS. Related metrics: tma_dtlb_load",
+ "MetricThreshold": "tma_dtlb_store > 0.05 & tma_store_bound > 0.2 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric roughly estimates the fraction of cycles spent handling first-level data TLB store misses. As with ordinary data caching; focus on improving data locality and reducing working-set size to reduce DTLB overhead. Additionally; consider using profile-guided optimization (PGO) to collocate frequently-used data on the same page. Try using larger page sizes for large amounts of frequently-used data. Sample with: MEM_UOPS_RETIRED.STLB_MISS_STORES. Related metrics: tma_dtlb_load",
"ScaleUnit": "100%"
},
{
"BriefDescription": "This metric roughly estimates how often CPU was handling synchronizations due to False Sharing",
"MetricExpr": "(200 * OFFCORE_RESPONSE.DEMAND_RFO.LLC_MISS.REMOTE_HITM + 60 * OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_CORE) / tma_info_thread_clks",
- "MetricGroup": "BvMS;DataSharing;Offcore;Snoop;TopdownL4;tma_L4_group;tma_issueSyncxn;tma_store_bound_group",
+ "MetricGroup": "BvMS;DataSharing;LockCont;Offcore;Snoop;TopdownL4;tma_L4_group;tma_issueSyncxn;tma_store_bound_group",
"MetricName": "tma_false_sharing",
- "MetricThreshold": "tma_false_sharing > 0.05 & (tma_store_bound > 0.2 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric roughly estimates how often CPU was handling synchronizations due to False Sharing. False Sharing is a multithreading hiccup; where multiple Logical Processors contend on different data-elements mapped into the same cache line. Sample with: MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM_PS;OFFCORE_RESPONSE.DEMAND_RFO.L3_HIT.SNOOP_HITM. Related metrics: tma_contested_accesses, tma_data_sharing, tma_machine_clears, tma_remote_cache",
+ "MetricThreshold": "tma_false_sharing > 0.05 & tma_store_bound > 0.2 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric roughly estimates how often CPU was handling synchronizations due to False Sharing. False Sharing is a multithreading hiccup; where multiple Logical Processors contend on different data-elements mapped into the same cache line. Sample with: MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM, MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM, OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_CORE, OFFCORE_RESPONSE.DEMAND_RFO.LLC_MISS.REMOTE_HITM. Related metrics: tma_contested_accesses, tma_data_sharing, tma_machine_clears, tma_remote_cache",
"ScaleUnit": "100%"
},
{
"BriefDescription": "This metric does a *rough estimation* of how often L1D Fill Buffer unavailability limited additional L1D miss memory access requests to proceed",
"MetricConstraint": "NO_GROUP_EVENTS",
- "MetricExpr": "tma_info_memory_load_miss_real_latency * cpu@L1D_PEND_MISS.REQUEST_FB_FULL\\,cmask\\=1@ / tma_info_thread_clks",
- "MetricGroup": "BvMS;MemoryBW;TopdownL4;tma_L4_group;tma_issueBW;tma_issueSL;tma_issueSmSt;tma_l1_bound_group",
+ "MetricExpr": "tma_info_memory_load_miss_real_latency * cpu@L1D_PEND_MISS.REQUEST_FB_FULL\\,cmask\\=0x1@ / tma_info_thread_clks",
+ "MetricGroup": "BvMB;MemoryBW;TopdownL4;tma_L4_group;tma_issueBW;tma_issueSL;tma_issueSmSt;tma_l1_bound_group",
"MetricName": "tma_fb_full",
"MetricThreshold": "tma_fb_full > 0.3",
- "PublicDescription": "This metric does a *rough estimation* of how often L1D Fill Buffer unavailability limited additional L1D miss memory access requests to proceed. The higher the metric value; the deeper the memory hierarchy level the misses are satisfied from (metric values >1 are valid). Often it hints on approaching bandwidth limits (to L2 cache; L3 cache or external memory). Related metrics: tma_info_system_dram_bw_use, tma_mem_bandwidth, tma_sq_full, tma_store_latency, tma_streaming_stores",
+ "PublicDescription": "This metric does a *rough estimation* of how often L1D Fill Buffer unavailability limited additional L1D miss memory access requests to proceed. The higher the metric value; the deeper the memory hierarchy level the misses are satisfied from (metric values >1 are valid). Often it hints on approaching bandwidth limits (to L2 cache; L3 cache or external memory). Related metrics: tma_info_system_dram_bw_use, tma_mem_bandwidth, tma_sq_full, tma_store_latency",
"ScaleUnit": "100%"
},
{
@@ -481,33 +481,33 @@
"MetricName": "tma_frontend_bound",
"MetricThreshold": "tma_frontend_bound > 0.15",
"MetricgroupNoGroup": "TopdownL1",
- "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound.",
+ "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound",
"ScaleUnit": "100%"
},
{
- "BriefDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences",
+ "BriefDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations , instructions that require two or more uops or micro-coded sequences",
"MetricExpr": "tma_microcode_sequencer",
"MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group",
"MetricName": "tma_heavy_operations",
"MetricThreshold": "tma_heavy_operations > 0.1",
"MetricgroupNoGroup": "TopdownL2",
- "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences. ([ICL+] Note this may overcount due to approximation using indirect events; [ADL+] .)",
+ "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations , instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.([ICL+] Note this may overcount due to approximation using indirect events; [ADL+])",
"ScaleUnit": "100%"
},
{
- "BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to instruction cache misses.",
+ "BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to instruction cache misses",
"MetricExpr": "ICACHE.IFDATA_STALL / tma_info_thread_clks",
"MetricGroup": "BigFootprint;BvBC;FetchLat;IcMiss;TopdownL3;tma_L3_group;tma_fetch_latency_group",
"MetricName": "tma_icache_misses",
- "MetricThreshold": "tma_icache_misses > 0.05 & (tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15)",
+ "MetricThreshold": "tma_icache_misses > 0.05 & tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15",
"ScaleUnit": "100%"
},
{
- "BriefDescription": "Instructions per retired mispredicts for indirect CALL or JMP branches (lower number means higher occurrence rate).",
+ "BriefDescription": "Instructions per retired Mispredicts for indirect CALL or JMP branches (lower number means higher occurrence rate)",
"MetricExpr": "tma_info_inst_mix_instructions / (UOPS_RETIRED.RETIRE_SLOTS / UOPS_ISSUED.ANY * BR_MISP_EXEC.INDIRECT)",
"MetricGroup": "Bad;BrMispredicts",
"MetricName": "tma_info_bad_spec_ipmisp_indirect",
- "MetricThreshold": "tma_info_bad_spec_ipmisp_indirect < 1e3"
+ "MetricThreshold": "tma_info_bad_spec_ipmisp_indirect < 1000"
},
{
"BriefDescription": "Number of Instructions per non-speculative Branch Misprediction (JEClear) (lower number means higher occurrence rate)",
@@ -518,7 +518,7 @@
},
{
"BriefDescription": "Core actual clocks when any Logical Processor is active on the Physical Core",
- "MetricExpr": "(CPU_CLK_UNHALTED.THREAD / 2 * (1 + CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE / CPU_CLK_UNHALTED.REF_XCLK) if #core_wide < 1 else (CPU_CLK_UNHALTED.THREAD_ANY / 2 if #SMT_on else tma_info_thread_clks))",
+ "MetricExpr": "(CPU_CLK_UNHALTED.THREAD_ANY / 2 if #SMT_on else tma_info_thread_clks)",
"MetricGroup": "SMT",
"MetricName": "tma_info_core_core_clks"
},
@@ -530,7 +530,7 @@
},
{
"BriefDescription": "Instruction-Level-Parallelism (average number of uops executed when there is execution) per thread (logical-processor)",
- "MetricExpr": "(UOPS_EXECUTED.CORE / 2 / (cpu@UOPS_EXECUTED.CORE\\,cmask\\=1@ / 2 if #SMT_on else cpu@UOPS_EXECUTED.CORE\\,cmask\\=1@) if #SMT_on else UOPS_EXECUTED.CORE / (cpu@UOPS_EXECUTED.CORE\\,cmask\\=1@ / 2 if #SMT_on else cpu@UOPS_EXECUTED.CORE\\,cmask\\=1@))",
+ "MetricExpr": "(UOPS_EXECUTED.CORE / 2 / (cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x1@ / 2 if #SMT_on else cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x1@) if #SMT_on else UOPS_EXECUTED.CORE / (cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x1@ / 2 if #SMT_on else cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x1@))",
"MetricGroup": "Backend;Cor;Pipeline;PortsUtil",
"MetricName": "tma_info_core_ilp"
},
@@ -549,7 +549,13 @@
"MetricName": "tma_info_frontend_ipunknown_branch"
},
{
- "BriefDescription": "Branch instructions per taken branch.",
+ "BriefDescription": "Taken Branches retired Per Cycle",
+ "MetricExpr": "BR_INST_RETIRED.NEAR_TAKEN / tma_info_thread_clks",
+ "MetricGroup": "Branches;FetchBW",
+ "MetricName": "tma_info_frontend_tbpc"
+ },
+ {
+ "BriefDescription": "Branch instructions per taken branch",
"MetricExpr": "BR_INST_RETIRED.ALL_BRANCHES / BR_INST_RETIRED.NEAR_TAKEN",
"MetricGroup": "Branches;Fed;PGO",
"MetricName": "tma_info_inst_mix_bptkbranch"
@@ -594,7 +600,7 @@
"MetricExpr": "INST_RETIRED.ANY / BR_INST_RETIRED.NEAR_TAKEN",
"MetricGroup": "Branches;Fed;FetchBW;Frontend;PGO;tma_issueFB",
"MetricName": "tma_info_inst_mix_iptb",
- "MetricThreshold": "tma_info_inst_mix_iptb < 9",
+ "MetricThreshold": "tma_info_inst_mix_iptb < 4 * 2 + 1",
"PublicDescription": "Instructions per taken branch. Related metrics: tma_dsb_switches, tma_fetch_bandwidth, tma_info_frontend_dsb_coverage, tma_lcp"
},
{
@@ -617,7 +623,7 @@
},
{
"BriefDescription": "Average per-thread data fill bandwidth to the L1 data cache [GB / sec]",
- "MetricExpr": "64 * L1D.REPLACEMENT / 1e9 / duration_time",
+ "MetricExpr": "64 * L1D.REPLACEMENT / 1e9 / tma_info_system_time",
"MetricGroup": "Mem;MemoryBW",
"MetricName": "tma_info_memory_l1d_cache_fill_bw"
},
@@ -629,7 +635,7 @@
},
{
"BriefDescription": "Average per-thread data fill bandwidth to the L2 cache [GB / sec]",
- "MetricExpr": "64 * L2_LINES_IN.ALL / 1e9 / duration_time",
+ "MetricExpr": "64 * L2_LINES_IN.ALL / 1e9 / tma_info_system_time",
"MetricGroup": "Mem;MemoryBW",
"MetricName": "tma_info_memory_l2_cache_fill_bw"
},
@@ -647,7 +653,7 @@
},
{
"BriefDescription": "Average per-thread data fill bandwidth to the L3 cache [GB / sec]",
- "MetricExpr": "64 * LONGEST_LAT_CACHE.MISS / 1e9 / duration_time",
+ "MetricExpr": "64 * LONGEST_LAT_CACHE.MISS / 1e9 / tma_info_system_time",
"MetricGroup": "Mem;MemoryBW",
"MetricName": "tma_info_memory_l3_cache_fill_bw"
},
@@ -666,7 +672,7 @@
{
"BriefDescription": "Average Latency for L2 cache miss demand Loads",
"MetricExpr": "OFFCORE_REQUESTS_OUTSTANDING.DEMAND_DATA_RD / OFFCORE_REQUESTS.DEMAND_DATA_RD",
- "MetricGroup": "Memory_Lat;Offcore",
+ "MetricGroup": "LockCont;Memory_Lat;Offcore",
"MetricName": "tma_info_memory_latency_load_l2_miss_latency"
},
{
@@ -698,14 +704,14 @@
"MetricThreshold": "tma_info_memory_tlb_page_walks_utilization > 0.5"
},
{
- "BriefDescription": "Average number of Uops retired in cycles where at least one uop has retired.",
- "MetricExpr": "UOPS_RETIRED.RETIRE_SLOTS / cpu@UOPS_RETIRED.RETIRE_SLOTS\\,cmask\\=1@",
+ "BriefDescription": "Average number of Uops retired in cycles where at least one uop has retired",
+ "MetricExpr": "UOPS_RETIRED.RETIRE_SLOTS / cpu@UOPS_RETIRED.RETIRE_SLOTS\\,cmask\\=0x1@",
"MetricGroup": "Pipeline;Ret",
"MetricName": "tma_info_pipeline_retire"
},
{
"BriefDescription": "Measured Average Core Frequency for unhalted processors [GHz]",
- "MetricExpr": "tma_info_system_turbo_utilization * TSC / 1e9 / duration_time",
+ "MetricExpr": "tma_info_system_turbo_utilization * TSC / 1e9 / tma_info_system_time",
"MetricGroup": "Power;Summary",
"MetricName": "tma_info_system_core_frequency"
},
@@ -723,7 +729,7 @@
},
{
"BriefDescription": "Average external Memory Bandwidth Use for reads and writes [GB / sec]",
- "MetricExpr": "64 * (UNC_M_CAS_COUNT.RD + UNC_M_CAS_COUNT.WR) / 1e9 / duration_time",
+ "MetricExpr": "64 * (UNC_M_CAS_COUNT.RD + UNC_M_CAS_COUNT.WR) / 1e9 / tma_info_system_time",
"MetricGroup": "HPC;MemOffcore;MemoryBW;SoC;tma_issueBW",
"MetricName": "tma_info_system_dram_bw_use",
"PublicDescription": "Average external Memory Bandwidth Use for reads and writes [GB / sec]. Related metrics: tma_fb_full, tma_mem_bandwidth, tma_sq_full"
@@ -733,13 +739,14 @@
"MetricExpr": "INST_RETIRED.ANY / BR_INST_RETIRED.FAR_BRANCH:u",
"MetricGroup": "Branches;OS",
"MetricName": "tma_info_system_ipfarbranch",
- "MetricThreshold": "tma_info_system_ipfarbranch < 1e6"
+ "MetricThreshold": "tma_info_system_ipfarbranch < 1000000"
},
{
"BriefDescription": "Cycles Per Instruction for the Operating System (OS) Kernel mode",
"MetricExpr": "CPU_CLK_UNHALTED.THREAD_P:k / INST_RETIRED.ANY_P:k",
"MetricGroup": "OS",
- "MetricName": "tma_info_system_kernel_cpi"
+ "MetricName": "tma_info_system_kernel_cpi",
+ "ScaleUnit": "1per_instr"
},
{
"BriefDescription": "Fraction of cycles spent in the Operating System (OS) Kernel mode",
@@ -750,18 +757,31 @@
},
{
"BriefDescription": "Average number of parallel data read requests to external memory",
- "MetricExpr": "UNC_C_TOR_OCCUPANCY.MISS_OPCODE@filter_opc\\=0x182@ / UNC_C_TOR_OCCUPANCY.MISS_OPCODE@filter_opc\\=0x182\\,thresh\\=1@",
+ "MetricExpr": "cbox@UNC_C_TOR_OCCUPANCY.MISS_OPCODE\\,filter_opc\\=0x182@ / cbox@UNC_C_TOR_OCCUPANCY.MISS_OPCODE\\,filter_opc\\=0x182@",
"MetricGroup": "Mem;MemoryBW;SoC",
"MetricName": "tma_info_system_mem_parallel_reads",
"PublicDescription": "Average number of parallel data read requests to external memory. Accounts for demand loads and L1/L2 prefetches"
},
{
"BriefDescription": "Average latency of data read request to external memory (in nanoseconds)",
- "MetricExpr": "1e9 * (UNC_C_TOR_OCCUPANCY.MISS_OPCODE@filter_opc\\=0x182@ / UNC_C_TOR_INSERTS.MISS_OPCODE@filter_opc\\=0x182@) / (tma_info_system_socket_clks / duration_time)",
+ "MetricExpr": "1e9 * (cbox@UNC_C_TOR_OCCUPANCY.MISS_OPCODE\\,filter_opc\\=0x182@ / cbox@UNC_C_TOR_INSERTS.MISS_OPCODE\\,filter_opc\\=0x182@) / (tma_info_system_socket_clks / tma_info_system_time)",
"MetricGroup": "Mem;MemoryLat;SoC",
"MetricName": "tma_info_system_mem_read_latency",
"PublicDescription": "Average latency of data read request to external memory (in nanoseconds). Accounts for demand loads and L1/L2 prefetches. ([RKL+]memory-controller only)"
},
+ {
+ "BriefDescription": "PerfMon Event Multiplexing accuracy indicator",
+ "MetricExpr": "CPU_CLK_UNHALTED.THREAD_P / CPU_CLK_UNHALTED.THREAD",
+ "MetricGroup": "Summary",
+ "MetricName": "tma_info_system_mux",
+ "MetricThreshold": "tma_info_system_mux > 1.1 | tma_info_system_mux < 0.9"
+ },
+ {
+ "BriefDescription": "Total package Power in Watts",
+ "MetricExpr": "(power@energy\\-pkg@ * 61 + 15.6 * power@energy\\-ram@) / (duration_time * 1e6)",
+ "MetricGroup": "Power;SoC",
+ "MetricName": "tma_info_system_power"
+ },
{
"BriefDescription": "Fraction of cycles where both hardware Logical Processors were active",
"MetricExpr": "(1 - CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE / (CPU_CLK_UNHALTED.REF_XCLK_ANY / 2) if #SMT_on else 0)",
@@ -774,6 +794,13 @@
"MetricGroup": "SoC",
"MetricName": "tma_info_system_socket_clks"
},
+ {
+ "BriefDescription": "Run duration time in seconds",
+ "MetricExpr": "duration_time",
+ "MetricGroup": "Summary",
+ "MetricName": "tma_info_system_time",
+ "MetricThreshold": "tma_info_system_time < 1"
+ },
{
"BriefDescription": "Average Frequency Utilization relative nominal frequency",
"MetricExpr": "tma_info_thread_clks / CPU_CLK_UNHALTED.REF_TSC",
@@ -782,12 +809,12 @@
},
{
"BriefDescription": "Measured Average Uncore Frequency for the SoC [GHz]",
- "MetricExpr": "tma_info_system_socket_clks / 1e9 / duration_time",
+ "MetricExpr": "tma_info_system_socket_clks / 1e9 / tma_info_system_time",
"MetricGroup": "SoC",
"MetricName": "tma_info_system_uncore_frequency"
},
{
- "BriefDescription": "Per-Logical Processor actual clocks when the Logical Processor is active.",
+ "BriefDescription": "Per-Logical Processor actual clocks when the Logical Processor is active",
"MetricExpr": "CPU_CLK_UNHALTED.THREAD",
"MetricGroup": "Pipeline",
"MetricName": "tma_info_thread_clks"
@@ -796,7 +823,8 @@
"BriefDescription": "Cycles Per Instruction (per Logical Processor)",
"MetricExpr": "1 / tma_info_thread_ipc",
"MetricGroup": "Mem;Pipeline",
- "MetricName": "tma_info_thread_cpi"
+ "MetricName": "tma_info_thread_cpi",
+ "ScaleUnit": "1per_instr"
},
{
"BriefDescription": "Instructions Per Cycle (per Logical Processor)",
@@ -822,24 +850,24 @@
"MetricExpr": "UOPS_RETIRED.RETIRE_SLOTS / BR_INST_RETIRED.NEAR_TAKEN",
"MetricGroup": "Branches;Fed;FetchBW",
"MetricName": "tma_info_thread_uptb",
- "MetricThreshold": "tma_info_thread_uptb < 6"
+ "MetricThreshold": "tma_info_thread_uptb < 4 * 1.5"
},
{
"BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to Instruction TLB (ITLB) misses",
"MetricExpr": "(14 * ITLB_MISSES.STLB_HIT + ITLB_MISSES.WALK_DURATION) / tma_info_thread_clks",
"MetricGroup": "BigFootprint;BvBC;FetchLat;MemoryTLB;TopdownL3;tma_L3_group;tma_fetch_latency_group",
"MetricName": "tma_itlb_misses",
- "MetricThreshold": "tma_itlb_misses > 0.05 & (tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15)",
+ "MetricThreshold": "tma_itlb_misses > 0.05 & tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15",
"PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to Instruction TLB (ITLB) misses. Sample with: ITLB_MISSES.WALK_COMPLETED",
"ScaleUnit": "100%"
},
{
- "BriefDescription": "This metric estimates how often the CPU was stalled without loads missing the L1 data cache",
+ "BriefDescription": "This metric estimates how often the CPU was stalled without loads missing the L1 Data (L1D) cache",
"MetricExpr": "max((min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.STALLS_LDM_PENDING) - CYCLE_ACTIVITY.STALLS_L1D_PENDING) / tma_info_thread_clks, 0)",
"MetricGroup": "CacheHits;MemoryBound;TmaL3mem;TopdownL3;tma_L3_group;tma_issueL1;tma_issueMC;tma_memory_bound_group",
"MetricName": "tma_l1_bound",
- "MetricThreshold": "tma_l1_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2)",
- "PublicDescription": "This metric estimates how often the CPU was stalled without loads missing the L1 data cache. The L1 data cache typically has the shortest latency. However; in certain cases like loads blocked on older stores; a load might suffer due to high latency even though it is being satisfied by the L1. Another example is loads who miss in the TLB. These cases are characterized by execution unit stalls; while some non-completed demand load lives in the machine without having that demand load missing the L1 cache. Sample with: MEM_LOAD_UOPS_RETIRED.L1_HIT_PS;MEM_LOAD_UOPS_RETIRED.HIT_LFB_PS. Related metrics: tma_clears_resteers, tma_machine_clears, tma_microcode_sequencer, tma_ms_switches, tma_ports_utilized_1",
+ "MetricThreshold": "tma_l1_bound > 0.1 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates how often the CPU was stalled without loads missing the L1 Data (L1D) cache. The L1D cache typically has the shortest latency. However; in certain cases like loads blocked on older stores; a load might suffer due to high latency even though it is being satisfied by the L1D. Another example is loads who miss in the TLB. These cases are characterized by execution unit stalls; while some non-completed demand load lives in the machine without having that demand load missing the L1 cache. Sample with: MEM_LOAD_UOPS_RETIRED.L1_HIT. Related metrics: tma_machine_clears, tma_microcode_sequencer, tma_ms_switches, tma_ports_utilized_1",
"ScaleUnit": "100%"
},
{
@@ -847,8 +875,8 @@
"MetricExpr": "(CYCLE_ACTIVITY.STALLS_L1D_PENDING - CYCLE_ACTIVITY.STALLS_L2_PENDING) / tma_info_thread_clks",
"MetricGroup": "BvML;CacheHits;MemoryBound;TmaL3mem;TopdownL3;tma_L3_group;tma_memory_bound_group",
"MetricName": "tma_l2_bound",
- "MetricThreshold": "tma_l2_bound > 0.05 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2)",
- "PublicDescription": "This metric estimates how often the CPU was stalled due to L2 cache accesses by loads. Avoiding cache misses (i.e. L1 misses/L2 hits) can improve the latency and increase performance. Sample with: MEM_LOAD_UOPS_RETIRED.L2_HIT_PS",
+ "MetricThreshold": "tma_l2_bound > 0.05 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates how often the CPU was stalled due to L2 cache accesses by loads. Avoiding cache misses (i.e. L1 misses/L2 hits) can improve the latency and increase performance. Sample with: MEM_LOAD_UOPS_RETIRED.L2_HIT",
"ScaleUnit": "100%"
},
{
@@ -857,8 +885,8 @@
"MetricExpr": "MEM_LOAD_UOPS_RETIRED.L3_HIT / (MEM_LOAD_UOPS_RETIRED.L3_HIT + 7 * MEM_LOAD_UOPS_RETIRED.L3_MISS) * CYCLE_ACTIVITY.STALLS_L2_PENDING / tma_info_thread_clks",
"MetricGroup": "CacheHits;MemoryBound;TmaL3mem;TopdownL3;tma_L3_group;tma_memory_bound_group",
"MetricName": "tma_l3_bound",
- "MetricThreshold": "tma_l3_bound > 0.05 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2)",
- "PublicDescription": "This metric estimates how often the CPU was stalled due to loads accesses to L3 cache or contended with a sibling Core. Avoiding cache misses (i.e. L2 misses/L3 hits) can improve the latency and increase performance. Sample with: MEM_LOAD_UOPS_RETIRED.L3_HIT_PS",
+ "MetricThreshold": "tma_l3_bound > 0.05 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates how often the CPU was stalled due to loads accesses to L3 cache or contended with a sibling Core. Avoiding cache misses (i.e. L2 misses/L3 hits) can improve the latency and increase performance. Sample with: MEM_LOAD_UOPS_RETIRED.L3_HIT",
"ScaleUnit": "100%"
},
{
@@ -867,8 +895,8 @@
"MetricExpr": "41 * (MEM_LOAD_UOPS_RETIRED.L3_HIT * (1 + MEM_LOAD_UOPS_RETIRED.HIT_LFB / (MEM_LOAD_UOPS_RETIRED.L2_HIT + MEM_LOAD_UOPS_RETIRED.L3_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS + MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD))) / tma_info_thread_clks",
"MetricGroup": "BvML;MemoryLat;TopdownL4;tma_L4_group;tma_issueLat;tma_l3_bound_group",
"MetricName": "tma_l3_hit_latency",
- "MetricThreshold": "tma_l3_hit_latency > 0.1 & (tma_l3_bound > 0.05 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric estimates fraction of cycles with demand load accesses that hit the L3 cache under unloaded scenarios (possibly L3 latency limited). Avoiding private cache misses (i.e. L2 misses/L3 hits) will improve the latency; reduce contention with sibling physical cores and increase performance. Note the value of this node may overlap with its siblings. Sample with: MEM_LOAD_UOPS_RETIRED.L3_HIT_PS. Related metrics: tma_mem_latency",
+ "MetricThreshold": "tma_l3_hit_latency > 0.1 & tma_l3_bound > 0.05 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates fraction of cycles with demand load accesses that hit the L3 cache under unloaded scenarios (possibly L3 latency limited). Avoiding private cache misses (i.e. L2 misses/L3 hits) will improve the latency; reduce contention with sibling physical cores and increase performance. Note the value of this node may overlap with its siblings. Sample with: MEM_LOAD_UOPS_RETIRED.L3_HIT. Related metrics: tma_branch_resteers, tma_mem_latency, tma_store_latency",
"ScaleUnit": "100%"
},
{
@@ -876,18 +904,18 @@
"MetricExpr": "ILD_STALL.LCP / tma_info_thread_clks",
"MetricGroup": "FetchLat;TopdownL3;tma_L3_group;tma_fetch_latency_group;tma_issueFB",
"MetricName": "tma_lcp",
- "MetricThreshold": "tma_lcp > 0.05 & (tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15)",
- "PublicDescription": "This metric represents fraction of cycles CPU was stalled due to Length Changing Prefixes (LCPs). Using proper compiler flags or Intel Compiler by default will certainly avoid this. #Link: Optimization Guide about LCP BKMs. Related metrics: tma_dsb_switches, tma_fetch_bandwidth, tma_info_frontend_dsb_coverage, tma_info_inst_mix_iptb",
+ "MetricThreshold": "tma_lcp > 0.05 & tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15",
+ "PublicDescription": "This metric represents fraction of cycles CPU was stalled due to Length Changing Prefixes (LCPs). Using proper compiler flags or Intel Compiler by default will certainly avoid this. Related metrics: tma_dsb_switches, tma_fetch_bandwidth, tma_info_frontend_dsb_coverage, tma_info_inst_mix_iptb",
"ScaleUnit": "100%"
},
{
- "BriefDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation)",
+ "BriefDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations , instructions that require no more than one uop (micro-operation)",
"MetricExpr": "tma_retiring - tma_heavy_operations",
"MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group",
"MetricName": "tma_light_operations",
"MetricThreshold": "tma_light_operations > 0.6",
"MetricgroupNoGroup": "TopdownL2",
- "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized code running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. ([ICL+] Note this may undercount due to approximation using indirect events; [ADL+] .). Sample with: INST_RETIRED.PREC_DIST",
+ "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations , instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized code running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. ([ICL+] Note this may undercount due to approximation using indirect events; [ADL+] .). Sample with: INST_RETIRED.PREC_DIST",
"ScaleUnit": "100%"
},
{
@@ -905,18 +933,18 @@
"MetricExpr": "200 * (MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM * (1 + MEM_LOAD_UOPS_RETIRED.HIT_LFB / (MEM_LOAD_UOPS_RETIRED.L2_HIT + MEM_LOAD_UOPS_RETIRED.L3_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS + MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD))) / tma_info_thread_clks",
"MetricGroup": "Server;TopdownL5;tma_L5_group;tma_mem_latency_group",
"MetricName": "tma_local_mem",
- "MetricThreshold": "tma_local_mem > 0.1 & (tma_mem_latency > 0.1 & (tma_dram_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2)))",
- "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling loads from local memory. Caching will improve the latency and increase performance. Sample with: MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM_PS",
+ "MetricThreshold": "tma_local_mem > 0.1 & tma_mem_latency > 0.1 & tma_dram_bound > 0.1 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling loads from local memory. Caching will improve the latency and increase performance. Sample with: MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM",
"ScaleUnit": "100%"
},
{
"BriefDescription": "This metric represents fraction of cycles the CPU spent handling cache misses due to lock operations",
"MetricConstraint": "NO_GROUP_EVENTS",
"MetricExpr": "MEM_UOPS_RETIRED.LOCK_LOADS / MEM_UOPS_RETIRED.ALL_STORES * min(CPU_CLK_UNHALTED.THREAD, OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DEMAND_RFO) / tma_info_thread_clks",
- "MetricGroup": "Offcore;TopdownL4;tma_L4_group;tma_issueRFO;tma_l1_bound_group",
+ "MetricGroup": "LockCont;Offcore;TopdownL4;tma_L4_group;tma_issueRFO;tma_l1_bound_group",
"MetricName": "tma_lock_latency",
- "MetricThreshold": "tma_lock_latency > 0.2 & (tma_l1_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric represents fraction of cycles the CPU spent handling cache misses due to lock operations. Due to the microarchitecture handling of locks; they are classified as L1_Bound regardless of what memory source satisfied them. Sample with: MEM_UOPS_RETIRED.LOCK_LOADS_PS. Related metrics: tma_store_latency",
+ "MetricThreshold": "tma_lock_latency > 0.2 & tma_l1_bound > 0.1 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric represents fraction of cycles the CPU spent handling cache misses due to lock operations. Due to the microarchitecture handling of locks; they are classified as L1_Bound regardless of what memory source satisfied them. Sample with: MEM_UOPS_RETIRED.LOCK_LOADS. Related metrics: tma_store_latency",
"ScaleUnit": "100%"
},
{
@@ -927,15 +955,15 @@
"MetricName": "tma_machine_clears",
"MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15",
"MetricgroupNoGroup": "TopdownL2",
- "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache",
+ "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache",
"ScaleUnit": "100%"
},
{
"BriefDescription": "This metric estimates fraction of cycles where the core's performance was likely hurt due to approaching bandwidth limits of external memory - DRAM ([SPR-HBM] and/or HBM)",
- "MetricExpr": "min(CPU_CLK_UNHALTED.THREAD, cpu@OFFCORE_REQUESTS_OUTSTANDING.ALL_DATA_RD\\,cmask\\=6@) / tma_info_thread_clks",
- "MetricGroup": "BvMS;MemoryBW;Offcore;TopdownL4;tma_L4_group;tma_dram_bound_group;tma_issueBW",
+ "MetricExpr": "min(CPU_CLK_UNHALTED.THREAD, cpu@OFFCORE_REQUESTS_OUTSTANDING.ALL_DATA_RD\\,cmask\\=0x6@) / tma_info_thread_clks",
+ "MetricGroup": "BvMB;MemoryBW;Offcore;TopdownL4;tma_L4_group;tma_dram_bound_group;tma_issueBW",
"MetricName": "tma_mem_bandwidth",
- "MetricThreshold": "tma_mem_bandwidth > 0.2 & (tma_dram_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
+ "MetricThreshold": "tma_mem_bandwidth > 0.2 & tma_dram_bound > 0.1 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
"PublicDescription": "This metric estimates fraction of cycles where the core's performance was likely hurt due to approaching bandwidth limits of external memory - DRAM ([SPR-HBM] and/or HBM). The underlying heuristic assumes that a similar off-core traffic is generated by all IA cores. This metric does not aggregate non-data-read requests by this logical processor; requests from other IA Logical Processors/Physical Cores/sockets; or other non-IA devices like GPU; hence the maximum external memory bandwidth limits may or may not be approached when this metric is flagged (see Uncore counters for that). Related metrics: tma_fb_full, tma_info_system_dram_bw_use, tma_sq_full",
"ScaleUnit": "100%"
},
@@ -944,19 +972,19 @@
"MetricExpr": "min(CPU_CLK_UNHALTED.THREAD, OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DATA_RD) / tma_info_thread_clks - tma_mem_bandwidth",
"MetricGroup": "BvML;MemoryLat;Offcore;TopdownL4;tma_L4_group;tma_dram_bound_group;tma_issueLat",
"MetricName": "tma_mem_latency",
- "MetricThreshold": "tma_mem_latency > 0.1 & (tma_dram_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
+ "MetricThreshold": "tma_mem_latency > 0.1 & tma_dram_bound > 0.1 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
"PublicDescription": "This metric estimates fraction of cycles where the performance was likely hurt due to latency from external memory - DRAM ([SPR-HBM] and/or HBM). This metric does not aggregate requests from other Logical Processors/Physical Cores/sockets (see Uncore counters for that). Related metrics: tma_l3_hit_latency",
"ScaleUnit": "100%"
},
{
"BriefDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck",
"MetricConstraint": "NO_GROUP_EVENTS",
- "MetricExpr": "((min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.STALLS_LDM_PENDING) + RESOURCE_STALLS.SB) / (min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE) + (cpu@UOPS_EXECUTED.CORE\\,cmask\\=1@ - (cpu@UOPS_EXECUTED.CORE\\,cmask\\=3@ if tma_info_thread_ipc > 1.8 else cpu@UOPS_EXECUTED.CORE\\,cmask\\=2@)) / 2 - (RS_EVENTS.EMPTY_CYCLES if tma_fetch_latency > 0.1 else 0) + RESOURCE_STALLS.SB) if #SMT_on else min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE) + cpu@UOPS_EXECUTED.CORE\\,cmask\\=1@ - (cpu@UOPS_EXECUTED.CORE\\,cmask\\=3@ if tma_info_thread_ipc > 1.8 else cpu@UOPS_EXECUTED.CORE\\,cmask\\=2@) - (RS_EVENTS.EMPTY_CYCLES if tma_fetch_latency > 0.1 else 0) + RESOURCE_STALLS.SB) * tma_backend_bound",
+ "MetricExpr": "(min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.STALLS_LDM_PENDING) + RESOURCE_STALLS.SB) / (min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE) + (cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x1@ - (cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x3@ if tma_info_thread_ipc > 1.8 else cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x2@)) / 2 - (RS_EVENTS.EMPTY_CYCLES if tma_fetch_latency > 0.1 else 0) + RESOURCE_STALLS.SB if #SMT_on else min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE) + cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x1@ - (cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x3@ if tma_info_thread_ipc > 1.8 else cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x2@) - (RS_EVENTS.EMPTY_CYCLES if tma_fetch_latency > 0.1 else 0) + RESOURCE_STALLS.SB) * tma_backend_bound",
"MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group",
"MetricName": "tma_memory_bound",
"MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
"MetricgroupNoGroup": "TopdownL2",
- "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).",
+ "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two)",
"ScaleUnit": "100%"
},
{
@@ -965,7 +993,7 @@
"MetricGroup": "MicroSeq;TopdownL3;tma_L3_group;tma_heavy_operations_group;tma_issueMC;tma_issueMS",
"MetricName": "tma_microcode_sequencer",
"MetricThreshold": "tma_microcode_sequencer > 0.05 & tma_heavy_operations > 0.1",
- "PublicDescription": "This metric represents fraction of slots the CPU was retiring uops fetched by the Microcode Sequencer (MS) unit. The MS is used for CISC instructions not supported by the default decoders (like repeat move strings; or CPUID); or by microcode assists used to address some operation modes (like in Floating Point assists). These cases can often be avoided. Sample with: IDQ.MS_UOPS. Related metrics: tma_clears_resteers, tma_l1_bound, tma_machine_clears, tma_ms_switches",
+ "PublicDescription": "This metric represents fraction of slots the CPU was retiring uops fetched by the Microcode Sequencer (MS) unit. The MS is used for CISC instructions not supported by the default decoders (like repeat move strings; or CPUID); or by microcode assists used to address some operation modes (like in Floating Point assists). These cases can often be avoided. Sample with: IDQ.MS_UOPS. Related metrics: tma_l1_bound, tma_machine_clears, tma_ms_switches",
"ScaleUnit": "100%"
},
{
@@ -974,7 +1002,7 @@
"MetricGroup": "DSBmiss;FetchBW;TopdownL3;tma_L3_group;tma_fetch_bandwidth_group",
"MetricName": "tma_mite",
"MetricThreshold": "tma_mite > 0.1 & tma_fetch_bandwidth > 0.2",
- "PublicDescription": "This metric represents Core fraction of cycles in which CPU was likely limited due to the MITE pipeline (the legacy decode pipeline). This pipeline is used for code that was not pre-cached in the DSB or LSD. For example; inefficiencies due to asymmetric decoders; use of long immediate or LCP can manifest as MITE fetch bandwidth bottleneck.",
+ "PublicDescription": "This metric represents Core fraction of cycles in which CPU was likely limited due to the MITE pipeline (the legacy decode pipeline). This pipeline is used for code that was not pre-cached in the DSB or LSD. For example; inefficiencies due to asymmetric decoders; use of long immediate or LCP can manifest as MITE fetch bandwidth bottleneck",
"ScaleUnit": "100%"
},
{
@@ -982,8 +1010,8 @@
"MetricExpr": "2 * IDQ.MS_SWITCHES / tma_info_thread_clks",
"MetricGroup": "FetchLat;MicroSeq;TopdownL3;tma_L3_group;tma_fetch_latency_group;tma_issueMC;tma_issueMS;tma_issueMV;tma_issueSO",
"MetricName": "tma_ms_switches",
- "MetricThreshold": "tma_ms_switches > 0.05 & (tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15)",
- "PublicDescription": "This metric estimates the fraction of cycles when the CPU was stalled due to switches of uop delivery to the Microcode Sequencer (MS). Commonly used instructions are optimized for delivery by the DSB (decoded i-cache) or MITE (legacy instruction decode) pipelines. Certain operations cannot be handled natively by the execution pipeline; and must be performed by microcode (small programs injected into the execution stream). Switching to the MS too often can negatively impact performance. The MS is designated to deliver long uop flows required by CISC instructions like CPUID; or uncommon conditions like Floating Point Assists when dealing with Denormals. Sample with: IDQ.MS_SWITCHES. Related metrics: tma_clears_resteers, tma_l1_bound, tma_machine_clears, tma_microcode_sequencer, tma_mixing_vectors, tma_serializing_operation",
+ "MetricThreshold": "tma_ms_switches > 0.05 & tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15",
+ "PublicDescription": "This metric estimates the fraction of cycles when the CPU was stalled due to switches of uop delivery to the Microcode Sequencer (MS). Commonly used instructions are optimized for delivery by the DSB (decoded i-cache) or MITE (legacy instruction decode) pipelines. Certain operations cannot be handled natively by the execution pipeline; and must be performed by microcode (small programs injected into the execution stream). Switching to the MS too often can negatively impact performance. The MS is designated to deliver long uop flows required by CISC instructions like CPUID; or uncommon conditions like Floating Point Assists when dealing with Denormals. Sample with: IDQ.MS_SWITCHES. Related metrics: tma_l1_bound, tma_machine_clears, tma_microcode_sequencer",
"ScaleUnit": "100%"
},
{
@@ -992,7 +1020,7 @@
"MetricGroup": "Compute;TopdownL6;tma_L6_group;tma_alu_op_utilization_group;tma_issue2P",
"MetricName": "tma_port_0",
"MetricThreshold": "tma_port_0 > 0.6",
- "PublicDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 0 ([SNB+] ALU; [HSW+] ALU and 2nd branch). Sample with: UOPS_DISPATCHED_PORT.PORT_0. Related metrics: tma_fp_scalar, tma_fp_vector, tma_fp_vector_128b, tma_fp_vector_256b, tma_fp_vector_512b, tma_port_1, tma_port_5, tma_port_6, tma_ports_utilized_2",
+ "PublicDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 0 ([SNB+] ALU; [HSW+] ALU and 2nd branch). Sample with: UOPS_DISPATCHED_PORT.PORT_0. Related metrics: tma_port_1, tma_port_5, tma_port_6, tma_ports_utilized_2",
"ScaleUnit": "100%"
},
{
@@ -1001,7 +1029,7 @@
"MetricGroup": "TopdownL6;tma_L6_group;tma_alu_op_utilization_group;tma_issue2P",
"MetricName": "tma_port_1",
"MetricThreshold": "tma_port_1 > 0.6",
- "PublicDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 1 (ALU). Sample with: UOPS_DISPATCHED_PORT.PORT_1. Related metrics: tma_fp_scalar, tma_fp_vector, tma_fp_vector_128b, tma_fp_vector_256b, tma_fp_vector_512b, tma_port_0, tma_port_5, tma_port_6, tma_ports_utilized_2",
+ "PublicDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 1 (ALU). Sample with: UOPS_DISPATCHED_PORT.PORT_1. Related metrics: tma_port_0, tma_port_5, tma_port_6, tma_ports_utilized_2",
"ScaleUnit": "100%"
},
{
@@ -1037,7 +1065,7 @@
"MetricGroup": "TopdownL6;tma_L6_group;tma_alu_op_utilization_group;tma_issue2P",
"MetricName": "tma_port_5",
"MetricThreshold": "tma_port_5 > 0.6",
- "PublicDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 5 ([SNB+] Branches and ALU; [HSW+] ALU). Sample with: UOPS_DISPATCHED.PORT_5. Related metrics: tma_fp_scalar, tma_fp_vector, tma_fp_vector_128b, tma_fp_vector_256b, tma_fp_vector_512b, tma_port_0, tma_port_1, tma_port_6, tma_ports_utilized_2",
+ "PublicDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 5 ([SNB+] Branches and ALU; [HSW+] ALU). Sample with: UOPS_DISPATCHED_PORT.PORT_5. Related metrics: tma_port_0, tma_port_1, tma_port_6, tma_ports_utilized_2",
"ScaleUnit": "100%"
},
{
@@ -1046,7 +1074,7 @@
"MetricGroup": "TopdownL6;tma_L6_group;tma_alu_op_utilization_group;tma_issue2P",
"MetricName": "tma_port_6",
"MetricThreshold": "tma_port_6 > 0.6",
- "PublicDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 6 ([HSW+] Primary Branch and simple ALU). Sample with: UOPS_DISPATCHED_PORT.PORT_6. Related metrics: tma_fp_scalar, tma_fp_vector, tma_fp_vector_128b, tma_fp_vector_256b, tma_fp_vector_512b, tma_port_0, tma_port_1, tma_port_5, tma_ports_utilized_2",
+ "PublicDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 6 ([HSW+] Primary Branch and simple ALU). Sample with: UOPS_DISPATCHED_PORT.PORT_1. Related metrics: tma_port_0, tma_port_1, tma_port_5, tma_ports_utilized_2",
"ScaleUnit": "100%"
},
{
@@ -1061,46 +1089,46 @@
{
"BriefDescription": "This metric estimates fraction of cycles the CPU performance was potentially limited due to Core computation issues (non divider-related)",
"MetricConstraint": "NO_GROUP_EVENTS",
- "MetricExpr": "(min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE) + (cpu@UOPS_EXECUTED.CORE\\,cmask\\=1@ - (cpu@UOPS_EXECUTED.CORE\\,cmask\\=3@ if tma_info_thread_ipc > 1.8 else cpu@UOPS_EXECUTED.CORE\\,cmask\\=2@)) / 2 - (RS_EVENTS.EMPTY_CYCLES if tma_fetch_latency > 0.1 else 0) + RESOURCE_STALLS.SB if #SMT_on else min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE) + cpu@UOPS_EXECUTED.CORE\\,cmask\\=1@ - (cpu@UOPS_EXECUTED.CORE\\,cmask\\=3@ if tma_info_thread_ipc > 1.8 else cpu@UOPS_EXECUTED.CORE\\,cmask\\=2@) - (RS_EVENTS.EMPTY_CYCLES if tma_fetch_latency > 0.1 else 0) + RESOURCE_STALLS.SB - RESOURCE_STALLS.SB - min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.STALLS_LDM_PENDING)) / tma_info_thread_clks",
+ "MetricExpr": "((min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE) + (cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x1@ - (cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x3@ if tma_info_thread_ipc > 1.8 else cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x2@)) / 2 - (RS_EVENTS.EMPTY_CYCLES if tma_fetch_latency > 0.1 else 0) + RESOURCE_STALLS.SB if #SMT_on else min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE) + cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x1@ - (cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x3@ if tma_info_thread_ipc > 1.8 else cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x2@) - (RS_EVENTS.EMPTY_CYCLES if tma_fetch_latency > 0.1 else 0) + RESOURCE_STALLS.SB) - RESOURCE_STALLS.SB - min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.STALLS_LDM_PENDING)) / tma_info_thread_clks",
"MetricGroup": "PortsUtil;TopdownL3;tma_L3_group;tma_core_bound_group",
"MetricName": "tma_ports_utilization",
- "MetricThreshold": "tma_ports_utilization > 0.15 & (tma_core_bound > 0.1 & tma_backend_bound > 0.2)",
- "PublicDescription": "This metric estimates fraction of cycles the CPU performance was potentially limited due to Core computation issues (non divider-related). Two distinct categories can be attributed into this metric: (1) heavy data-dependency among contiguous instructions would manifest in this metric - such cases are often referred to as low Instruction Level Parallelism (ILP). (2) Contention on some hardware execution unit other than Divider. For example; when there are too many multiply operations.",
+ "MetricThreshold": "tma_ports_utilization > 0.15 & tma_core_bound > 0.1 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates fraction of cycles the CPU performance was potentially limited due to Core computation issues (non divider-related). Two distinct categories can be attributed into this metric: (1) heavy data-dependency among contiguous instructions would manifest in this metric - such cases are often referred to as low Instruction Level Parallelism (ILP). (2) Contention on some hardware execution unit other than Divider. For example; when there are too many multiply operations",
"ScaleUnit": "100%"
},
{
"BriefDescription": "This metric represents fraction of cycles CPU executed no uops on any execution port (Logical Processor cycles since ICL, Physical Core cycles otherwise)",
- "MetricExpr": "(cpu@UOPS_EXECUTED.CORE\\,inv\\,cmask\\=1@ / 2 if #SMT_on else (min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE) - (RS_EVENTS.EMPTY_CYCLES if tma_fetch_latency > 0.1 else 0)) / tma_info_core_core_clks)",
+ "MetricExpr": "(cpu@UOPS_EXECUTED.CORE\\,inv\\=0x1\\,cmask\\=0x1@ / 2 if #SMT_on else min(CPU_CLK_UNHALTED.THREAD, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE) - (RS_EVENTS.EMPTY_CYCLES if tma_fetch_latency > 0.1 else 0)) / tma_info_core_core_clks",
"MetricGroup": "PortsUtil;TopdownL4;tma_L4_group;tma_ports_utilization_group",
"MetricName": "tma_ports_utilized_0",
- "MetricThreshold": "tma_ports_utilized_0 > 0.2 & (tma_ports_utilization > 0.15 & (tma_core_bound > 0.1 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric represents fraction of cycles CPU executed no uops on any execution port (Logical Processor cycles since ICL, Physical Core cycles otherwise). Long-latency instructions like divides may contribute to this metric.",
+ "MetricThreshold": "tma_ports_utilized_0 > 0.2 & tma_ports_utilization > 0.15 & tma_core_bound > 0.1 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric represents fraction of cycles CPU executed no uops on any execution port (Logical Processor cycles since ICL, Physical Core cycles otherwise). Long-latency instructions like divides may contribute to this metric",
"ScaleUnit": "100%"
},
{
"BriefDescription": "This metric represents fraction of cycles where the CPU executed total of 1 uop per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise)",
- "MetricExpr": "((cpu@UOPS_EXECUTED.CORE\\,cmask\\=1@ - cpu@UOPS_EXECUTED.CORE\\,cmask\\=2@) / 2 if #SMT_on else (cpu@UOPS_EXECUTED.CORE\\,cmask\\=1@ - cpu@UOPS_EXECUTED.CORE\\,cmask\\=2@) / tma_info_core_core_clks)",
+ "MetricExpr": "((cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x1@ - cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x2@) / 2 if #SMT_on else cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x1@ - cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x2@) / tma_info_core_core_clks",
"MetricGroup": "PortsUtil;TopdownL4;tma_L4_group;tma_issueL1;tma_ports_utilization_group",
"MetricName": "tma_ports_utilized_1",
- "MetricThreshold": "tma_ports_utilized_1 > 0.2 & (tma_ports_utilization > 0.15 & (tma_core_bound > 0.1 & tma_backend_bound > 0.2))",
+ "MetricThreshold": "tma_ports_utilized_1 > 0.2 & tma_ports_utilization > 0.15 & tma_core_bound > 0.1 & tma_backend_bound > 0.2",
"PublicDescription": "This metric represents fraction of cycles where the CPU executed total of 1 uop per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise). This can be due to heavy data-dependency among software instructions; or over oversubscribing a particular hardware resource. In some other cases with high 1_Port_Utilized and L1_Bound; this metric can point to L1 data-cache latency bottleneck that may not necessarily manifest with complete execution starvation (due to the short L1 latency e.g. walking a linked list) - looking at the assembly can be helpful. Related metrics: tma_l1_bound",
"ScaleUnit": "100%"
},
{
"BriefDescription": "This metric represents fraction of cycles CPU executed total of 2 uops per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise)",
- "MetricExpr": "((cpu@UOPS_EXECUTED.CORE\\,cmask\\=2@ - cpu@UOPS_EXECUTED.CORE\\,cmask\\=3@) / 2 if #SMT_on else (cpu@UOPS_EXECUTED.CORE\\,cmask\\=2@ - cpu@UOPS_EXECUTED.CORE\\,cmask\\=3@) / tma_info_core_core_clks)",
+ "MetricExpr": "((cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x2@ - cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x3@) / 2 if #SMT_on else cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x2@ - cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x3@) / tma_info_core_core_clks",
"MetricGroup": "PortsUtil;TopdownL4;tma_L4_group;tma_issue2P;tma_ports_utilization_group",
"MetricName": "tma_ports_utilized_2",
- "MetricThreshold": "tma_ports_utilized_2 > 0.15 & (tma_ports_utilization > 0.15 & (tma_core_bound > 0.1 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric represents fraction of cycles CPU executed total of 2 uops per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise). Loop Vectorization -most compilers feature auto-Vectorization options today- reduces pressure on the execution ports as multiple elements are calculated with same uop. Related metrics: tma_fp_scalar, tma_fp_vector, tma_fp_vector_128b, tma_fp_vector_256b, tma_fp_vector_512b, tma_port_0, tma_port_1, tma_port_5, tma_port_6",
+ "MetricThreshold": "tma_ports_utilized_2 > 0.15 & tma_ports_utilization > 0.15 & tma_core_bound > 0.1 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric represents fraction of cycles CPU executed total of 2 uops per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise). Loop Vectorization -most compilers feature auto-Vectorization options today- reduces pressure on the execution ports as multiple elements are calculated with same uop. Related metrics: tma_port_0, tma_port_1, tma_port_5, tma_port_6",
"ScaleUnit": "100%"
},
{
- "BriefDescription": "This metric represents fraction of cycles CPU executed total of 3 or more uops per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise).",
- "MetricExpr": "(cpu@UOPS_EXECUTED.CORE\\,cmask\\=3@ / 2 if #SMT_on else cpu@UOPS_EXECUTED.CORE\\,cmask\\=3@) / tma_info_core_core_clks",
+ "BriefDescription": "This metric represents fraction of cycles CPU executed total of 3 or more uops per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise)",
+ "MetricExpr": "(cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x3@ / 2 if #SMT_on else cpu@UOPS_EXECUTED.CORE\\,cmask\\=0x3@) / tma_info_core_core_clks",
"MetricGroup": "BvCB;PortsUtil;TopdownL4;tma_L4_group;tma_ports_utilization_group",
"MetricName": "tma_ports_utilized_3m",
- "MetricThreshold": "tma_ports_utilized_3m > 0.4 & (tma_ports_utilization > 0.15 & (tma_core_bound > 0.1 & tma_backend_bound > 0.2))",
+ "MetricThreshold": "tma_ports_utilized_3m > 0.4 & tma_ports_utilization > 0.15 & tma_core_bound > 0.1 & tma_backend_bound > 0.2",
"ScaleUnit": "100%"
},
{
@@ -1109,8 +1137,8 @@
"MetricExpr": "(200 * (MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM * (1 + MEM_LOAD_UOPS_RETIRED.HIT_LFB / (MEM_LOAD_UOPS_RETIRED.L2_HIT + MEM_LOAD_UOPS_RETIRED.L3_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS + MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD))) + 180 * (MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD * (1 + MEM_LOAD_UOPS_RETIRED.HIT_LFB / (MEM_LOAD_UOPS_RETIRED.L2_HIT + MEM_LOAD_UOPS_RETIRED.L3_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS + MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD)))) / tma_info_thread_clks",
"MetricGroup": "Offcore;Server;Snoop;TopdownL5;tma_L5_group;tma_issueSyncxn;tma_mem_latency_group",
"MetricName": "tma_remote_cache",
- "MetricThreshold": "tma_remote_cache > 0.05 & (tma_mem_latency > 0.1 & (tma_dram_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2)))",
- "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling loads from remote cache in other sockets including synchronizations issues. This is caused often due to non-optimal NUMA allocations. #link to NUMA article. Sample with: MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM_PS;MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD_PS. Related metrics: tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_machine_clears",
+ "MetricThreshold": "tma_remote_cache > 0.05 & tma_mem_latency > 0.1 & tma_dram_bound > 0.1 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling loads from remote cache in other sockets including synchronizations issues. This is caused often due to non-optimal NUMA allocations. Sample with: MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM, MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD. Related metrics: tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_machine_clears",
"ScaleUnit": "100%"
},
{
@@ -1118,8 +1146,8 @@
"MetricExpr": "310 * (MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM * (1 + MEM_LOAD_UOPS_RETIRED.HIT_LFB / (MEM_LOAD_UOPS_RETIRED.L2_HIT + MEM_LOAD_UOPS_RETIRED.L3_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM + MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS + MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM + MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD))) / tma_info_thread_clks",
"MetricGroup": "Server;Snoop;TopdownL5;tma_L5_group;tma_mem_latency_group",
"MetricName": "tma_remote_mem",
- "MetricThreshold": "tma_remote_mem > 0.1 & (tma_mem_latency > 0.1 & (tma_dram_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2)))",
- "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling loads from remote memory. This is caused often due to non-optimal NUMA allocations. #link to NUMA article. Sample with: MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM_PS",
+ "MetricThreshold": "tma_remote_mem > 0.1 & tma_mem_latency > 0.1 & tma_dram_bound > 0.1 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling loads from remote memory. This is caused often due to non-optimal NUMA allocations. Sample with: MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM",
"ScaleUnit": "100%"
},
{
@@ -1138,8 +1166,8 @@
"MetricExpr": "tma_info_memory_load_miss_real_latency * LD_BLOCKS.NO_SR / tma_info_thread_clks",
"MetricGroup": "TopdownL4;tma_L4_group;tma_l1_bound_group",
"MetricName": "tma_split_loads",
- "MetricThreshold": "tma_split_loads > 0.2 & (tma_l1_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric estimates fraction of cycles handling memory load split accesses - load that cross 64-byte cache line boundary. Sample with: MEM_UOPS_RETIRED.SPLIT_LOADS_PS",
+ "MetricThreshold": "tma_split_loads > 0.3",
+ "PublicDescription": "This metric estimates fraction of cycles handling memory load split accesses - load that cross 64-byte cache line boundary. Sample with: MEM_UOPS_RETIRED.SPLIT_LOADS",
"ScaleUnit": "100%"
},
{
@@ -1147,16 +1175,16 @@
"MetricExpr": "2 * MEM_UOPS_RETIRED.SPLIT_STORES / tma_info_core_core_clks",
"MetricGroup": "TopdownL4;tma_L4_group;tma_issueSpSt;tma_store_bound_group",
"MetricName": "tma_split_stores",
- "MetricThreshold": "tma_split_stores > 0.2 & (tma_store_bound > 0.2 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric represents rate of split store accesses. Consider aligning your data to the 64-byte cache line granularity. Sample with: MEM_UOPS_RETIRED.SPLIT_STORES_PS. Related metrics: tma_port_4",
+ "MetricThreshold": "tma_split_stores > 0.2 & tma_store_bound > 0.2 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric represents rate of split store accesses. Consider aligning your data to the 64-byte cache line granularity. Sample with: MEM_UOPS_RETIRED.SPLIT_STORES. Related metrics: tma_port_4",
"ScaleUnit": "100%"
},
{
"BriefDescription": "This metric measures fraction of cycles where the Super Queue (SQ) was full taking into account all request-types and both hardware SMT threads (Logical Processors)",
"MetricExpr": "(OFFCORE_REQUESTS_BUFFER.SQ_FULL / 2 if #SMT_on else OFFCORE_REQUESTS_BUFFER.SQ_FULL) / tma_info_core_core_clks",
- "MetricGroup": "BvMS;MemoryBW;Offcore;TopdownL4;tma_L4_group;tma_issueBW;tma_l3_bound_group",
+ "MetricGroup": "BvMB;MemoryBW;Offcore;TopdownL4;tma_L4_group;tma_issueBW;tma_l3_bound_group",
"MetricName": "tma_sq_full",
- "MetricThreshold": "tma_sq_full > 0.3 & (tma_l3_bound > 0.05 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
+ "MetricThreshold": "tma_sq_full > 0.3 & tma_l3_bound > 0.05 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
"PublicDescription": "This metric measures fraction of cycles where the Super Queue (SQ) was full taking into account all request-types and both hardware SMT threads (Logical Processors). Related metrics: tma_fb_full, tma_info_system_dram_bw_use, tma_mem_bandwidth",
"ScaleUnit": "100%"
},
@@ -1165,8 +1193,8 @@
"MetricExpr": "RESOURCE_STALLS.SB / tma_info_thread_clks",
"MetricGroup": "MemoryBound;TmaL3mem;TopdownL3;tma_L3_group;tma_memory_bound_group",
"MetricName": "tma_store_bound",
- "MetricThreshold": "tma_store_bound > 0.2 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2)",
- "PublicDescription": "This metric estimates how often CPU was stalled due to RFO store memory accesses; RFO store issue a read-for-ownership request before the write. Even though store accesses do not typically stall out-of-order CPUs; there are few cases where stores can lead to actual stalls. This metric will be flagged should RFO stores be a bottleneck. Sample with: MEM_UOPS_RETIRED.ALL_STORES_PS",
+ "MetricThreshold": "tma_store_bound > 0.2 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates how often CPU was stalled due to RFO store memory accesses; RFO store issue a read-for-ownership request before the write. Even though store accesses do not typically stall out-of-order CPUs; there are few cases where stores can lead to actual stalls. This metric will be flagged should RFO stores be a bottleneck. Sample with: MEM_UOPS_RETIRED.ALL_STORES",
"ScaleUnit": "100%"
},
{
@@ -1174,18 +1202,18 @@
"MetricExpr": "13 * LD_BLOCKS.STORE_FORWARD / tma_info_thread_clks",
"MetricGroup": "TopdownL4;tma_L4_group;tma_l1_bound_group",
"MetricName": "tma_store_fwd_blk",
- "MetricThreshold": "tma_store_fwd_blk > 0.1 & (tma_l1_bound > 0.1 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric roughly estimates fraction of cycles when the memory subsystem had loads blocked since they could not forward data from earlier (in program order) overlapping stores. To streamline memory operations in the pipeline; a load can avoid waiting for memory if a prior in-flight store is writing the data that the load wants to read (store forwarding process). However; in some cases the load may be blocked for a significant time pending the store forward. For example; when the prior store is writing a smaller region than the load is reading.",
+ "MetricThreshold": "tma_store_fwd_blk > 0.1 & tma_l1_bound > 0.1 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric roughly estimates fraction of cycles when the memory subsystem had loads blocked since they could not forward data from earlier (in program order) overlapping stores. To streamline memory operations in the pipeline; a load can avoid waiting for memory if a prior in-flight store is writing the data that the load wants to read (store forwarding process). However; in some cases the load may be blocked for a significant time pending the store forward. For example; when the prior store is writing a smaller region than the load is reading",
"ScaleUnit": "100%"
},
{
"BriefDescription": "This metric estimates fraction of cycles the CPU spent handling L1D store misses",
"MetricConstraint": "NO_GROUP_EVENTS",
"MetricExpr": "(L2_RQSTS.RFO_HIT * 9 * (1 - MEM_UOPS_RETIRED.LOCK_LOADS / MEM_UOPS_RETIRED.ALL_STORES) + (1 - MEM_UOPS_RETIRED.LOCK_LOADS / MEM_UOPS_RETIRED.ALL_STORES) * min(CPU_CLK_UNHALTED.THREAD, OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DEMAND_RFO)) / tma_info_thread_clks",
- "MetricGroup": "BvML;MemoryLat;Offcore;TopdownL4;tma_L4_group;tma_issueRFO;tma_issueSL;tma_store_bound_group",
+ "MetricGroup": "BvML;LockCont;MemoryLat;Offcore;TopdownL4;tma_L4_group;tma_issueRFO;tma_issueSL;tma_store_bound_group",
"MetricName": "tma_store_latency",
- "MetricThreshold": "tma_store_latency > 0.1 & (tma_store_bound > 0.2 & (tma_memory_bound > 0.2 & tma_backend_bound > 0.2))",
- "PublicDescription": "This metric estimates fraction of cycles the CPU spent handling L1D store misses. Store accesses usually less impact out-of-order core performance; however; holding resources for longer time can lead into undesired implications (e.g. contention on L1D fill-buffer entries - see FB_Full). Related metrics: tma_fb_full, tma_lock_latency",
+ "MetricThreshold": "tma_store_latency > 0.1 & tma_store_bound > 0.2 & tma_memory_bound > 0.2 & tma_backend_bound > 0.2",
+ "PublicDescription": "This metric estimates fraction of cycles the CPU spent handling L1D store misses. Store accesses usually less impact out-of-order core performance; however; holding resources for longer time can lead into undesired implications (e.g. contention on L1D fill-buffer entries - see FB_Full). Related metrics: tma_branch_resteers, tma_fb_full, tma_l3_hit_latency, tma_lock_latency",
"ScaleUnit": "100%"
},
{
diff --git a/tools/perf/pmu-events/arch/x86/haswellx/metricgroups.json b/tools/perf/pmu-events/arch/x86/haswellx/metricgroups.json
index 4193c90c3459..0863375bdead 100644
--- a/tools/perf/pmu-events/arch/x86/haswellx/metricgroups.json
+++ b/tools/perf/pmu-events/arch/x86/haswellx/metricgroups.json
@@ -9,6 +9,7 @@
"BvCB": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"BvFB": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"BvIO": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
+ "BvMB": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"BvML": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"BvMP": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"BvMS": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
@@ -34,6 +35,7 @@
"InsType": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"L2Evicts": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"LSD": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
+ "LockCont": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"MachineClears": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"Machine_Clears": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"Mem": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
@@ -51,6 +53,7 @@
"Pipeline": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"PortsUtil": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"Power": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
+ "Prefetches": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"Ret": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"Retire": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
"SMT": "Grouping from Top-down Microarchitecture Analysis Metrics spreadsheet",
@@ -78,6 +81,7 @@
"tma_bad_speculation_group": "Metrics contributing to tma_bad_speculation category",
"tma_branch_resteers_group": "Metrics contributing to tma_branch_resteers category",
"tma_core_bound_group": "Metrics contributing to tma_core_bound category",
+ "tma_divider_group": "Metrics contributing to tma_divider category",
"tma_dram_bound_group": "Metrics contributing to tma_dram_bound category",
"tma_dtlb_load_group": "Metrics contributing to tma_dtlb_load category",
"tma_dtlb_store_group": "Metrics contributing to tma_dtlb_store category",
@@ -103,6 +107,7 @@
"tma_issueSpSt": "Metrics related by the issue $issueSpSt",
"tma_issueSyncxn": "Metrics related by the issue $issueSyncxn",
"tma_issueTLB": "Metrics related by the issue $issueTLB",
+ "tma_itlb_misses_group": "Metrics contributing to tma_itlb_misses category",
"tma_l1_bound_group": "Metrics contributing to tma_l1_bound category",
"tma_l3_bound_group": "Metrics contributing to tma_l3_bound category",
"tma_light_operations_group": "Metrics contributing to tma_light_operations category",
diff --git a/tools/perf/pmu-events/arch/x86/haswellx/uncore-cache.json b/tools/perf/pmu-events/arch/x86/haswellx/uncore-cache.json
index 3c23bafcba28..d664af16c1db 100644
--- a/tools/perf/pmu-events/arch/x86/haswellx/uncore-cache.json
+++ b/tools/perf/pmu-events/arch/x86/haswellx/uncore-cache.json
@@ -812,7 +812,7 @@
"EventCode": "0x12",
"EventName": "UNC_C_RxR_EXT_STARVED.IPQ",
"PerPkg": "1",
- "PublicDescription": "Counts cycles in external starvation. This occurs when one of the ingress queues is being starved by the other queues.; IPQ is externally startved and therefore we are blocking the IRQ.",
+ "PublicDescription": "Counts cycles in external starvation. This occurs when one of the ingress queues is being starved by the other queues.; IPQ is externally starved and therefore we are blocking the IRQ.",
"UMask": "0x2",
"Unit": "CBOX"
},
@@ -1869,7 +1869,7 @@
"EventCode": "0x14",
"EventName": "UNC_H_BYPASS_IMC.NOT_TAKEN",
"PerPkg": "1",
- "PublicDescription": "Counts the number of times when the HA was able to bypass was attempted. This is a latency optimization for situations when there is light loadings on the memory subsystem. This can be filted by when the bypass was taken and when it was not.; Filter for transactions that could not take the bypass.",
+ "PublicDescription": "Counts the number of times when the HA was able to bypass was attempted. This is a latency optimization for situations when there is light loadings on the memory subsystem. This can be filtered by when the bypass was taken and when it was not.; Filter for transactions that could not take the bypass.",
"UMask": "0x2",
"Unit": "HA"
},
@@ -1879,7 +1879,7 @@
"EventCode": "0x14",
"EventName": "UNC_H_BYPASS_IMC.TAKEN",
"PerPkg": "1",
- "PublicDescription": "Counts the number of times when the HA was able to bypass was attempted. This is a latency optimization for situations when there is light loadings on the memory subsystem. This can be filted by when the bypass was taken and when it was not.; Filter for transactions that succeeded in taking the bypass.",
+ "PublicDescription": "Counts the number of times when the HA was able to bypass was attempted. This is a latency optimization for situations when there is light loadings on the memory subsystem. This can be filtered by when the bypass was taken and when it was not.; Filter for transactions that succeeded in taking the bypass.",
"UMask": "0x1",
"Unit": "HA"
},
@@ -2874,7 +2874,7 @@
"EventCode": "0x15",
"EventName": "UNC_H_RPQ_CYCLES_NO_REG_CREDITS.CHN0",
"PerPkg": "1",
- "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting reads from the HA into the iMC. In order to send reads into the memory controller, the HA must first acquire a credit for the iMC's RPQ (read pending queue). This queue is broken into regular credits/buffers that are used by general reads, and special requests such as ISOCH reads. This count only tracks the regular credits Common high banwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 0 only.",
+ "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting reads from the HA into the iMC. In order to send reads into the memory controller, the HA must first acquire a credit for the iMC's RPQ (read pending queue). This queue is broken into regular credits/buffers that are used by general reads, and special requests such as ISOCH reads. This count only tracks the regular credits Common high bandwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 0 only.",
"UMask": "0x1",
"Unit": "HA"
},
@@ -2884,7 +2884,7 @@
"EventCode": "0x15",
"EventName": "UNC_H_RPQ_CYCLES_NO_REG_CREDITS.CHN1",
"PerPkg": "1",
- "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting reads from the HA into the iMC. In order to send reads into the memory controller, the HA must first acquire a credit for the iMC's RPQ (read pending queue). This queue is broken into regular credits/buffers that are used by general reads, and special requests such as ISOCH reads. This count only tracks the regular credits Common high banwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 1 only.",
+ "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting reads from the HA into the iMC. In order to send reads into the memory controller, the HA must first acquire a credit for the iMC's RPQ (read pending queue). This queue is broken into regular credits/buffers that are used by general reads, and special requests such as ISOCH reads. This count only tracks the regular credits Common high bandwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 1 only.",
"UMask": "0x2",
"Unit": "HA"
},
@@ -2894,7 +2894,7 @@
"EventCode": "0x15",
"EventName": "UNC_H_RPQ_CYCLES_NO_REG_CREDITS.CHN2",
"PerPkg": "1",
- "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting reads from the HA into the iMC. In order to send reads into the memory controller, the HA must first acquire a credit for the iMC's RPQ (read pending queue). This queue is broken into regular credits/buffers that are used by general reads, and special requests such as ISOCH reads. This count only tracks the regular credits Common high banwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 2 only.",
+ "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting reads from the HA into the iMC. In order to send reads into the memory controller, the HA must first acquire a credit for the iMC's RPQ (read pending queue). This queue is broken into regular credits/buffers that are used by general reads, and special requests such as ISOCH reads. This count only tracks the regular credits Common high bandwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 2 only.",
"UMask": "0x4",
"Unit": "HA"
},
@@ -2904,7 +2904,7 @@
"EventCode": "0x15",
"EventName": "UNC_H_RPQ_CYCLES_NO_REG_CREDITS.CHN3",
"PerPkg": "1",
- "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting reads from the HA into the iMC. In order to send reads into the memory controller, the HA must first acquire a credit for the iMC's RPQ (read pending queue). This queue is broken into regular credits/buffers that are used by general reads, and special requests such as ISOCH reads. This count only tracks the regular credits Common high banwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 3 only.",
+ "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting reads from the HA into the iMC. In order to send reads into the memory controller, the HA must first acquire a credit for the iMC's RPQ (read pending queue). This queue is broken into regular credits/buffers that are used by general reads, and special requests such as ISOCH reads. This count only tracks the regular credits Common high bandwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 3 only.",
"UMask": "0x8",
"Unit": "HA"
},
@@ -3438,7 +3438,7 @@
"EventCode": "0x3",
"EventName": "UNC_H_TRACKER_CYCLES_NE.ALL",
"PerPkg": "1",
- "PublicDescription": "Counts the number of cycles when the local HA tracker pool is not empty. This can be used with edge detect to identify the number of situations when the pool became empty. This should not be confused with RTID credit usage -- which must be tracked inside each cbo individually -- but represents the actual tracker buffer structure. In other words, this buffer could be completely empty, but there may still be credits in use by the CBos. This stat can be used in conjunction with the occupancy accumulation stat in order to calculate average queue occpancy. HA trackers are allocated as soon as a request enters the HA if an HT (Home Tracker) entry is available and is released after the snoop response and data return (or post in the case of a write) and the response is returned on the ring.; Requests coming from both local and remote sockets.",
+ "PublicDescription": "Counts the number of cycles when the local HA tracker pool is not empty. This can be used with edge detect to identify the number of situations when the pool became empty. This should not be confused with RTID credit usage -- which must be tracked inside each cbo individually -- but represents the actual tracker buffer structure. In other words, this buffer could be completely empty, but there may still be credits in use by the CBos. This stat can be used in conjunction with the occupancy accumulation stat in order to calculate average queue occupancy. HA trackers are allocated as soon as a request enters the HA if an HT (Home Tracker) entry is available and is released after the snoop response and data return (or post in the case of a write) and the response is returned on the ring.; Requests coming from both local and remote sockets.",
"UMask": "0x3",
"Unit": "HA"
},
@@ -3448,7 +3448,7 @@
"EventCode": "0x3",
"EventName": "UNC_H_TRACKER_CYCLES_NE.LOCAL",
"PerPkg": "1",
- "PublicDescription": "Counts the number of cycles when the local HA tracker pool is not empty. This can be used with edge detect to identify the number of situations when the pool became empty. This should not be confused with RTID credit usage -- which must be tracked inside each cbo individually -- but represents the actual tracker buffer structure. In other words, this buffer could be completely empty, but there may still be credits in use by the CBos. This stat can be used in conjunction with the occupancy accumulation stat in order to calculate average queue occpancy. HA trackers are allocated as soon as a request enters the HA if an HT (Home Tracker) entry is available and is released after the snoop response and data return (or post in the case of a write) and the response is returned on the ring.; This filter includes only requests coming from the local socket.",
+ "PublicDescription": "Counts the number of cycles when the local HA tracker pool is not empty. This can be used with edge detect to identify the number of situations when the pool became empty. This should not be confused with RTID credit usage -- which must be tracked inside each cbo individually -- but represents the actual tracker buffer structure. In other words, this buffer could be completely empty, but there may still be credits in use by the CBos. This stat can be used in conjunction with the occupancy accumulation stat in order to calculate average queue occupancy. HA trackers are allocated as soon as a request enters the HA if an HT (Home Tracker) entry is available and is released after the snoop response and data return (or post in the case of a write) and the response is returned on the ring.; This filter includes only requests coming from the local socket.",
"UMask": "0x1",
"Unit": "HA"
},
@@ -3458,7 +3458,7 @@
"EventCode": "0x3",
"EventName": "UNC_H_TRACKER_CYCLES_NE.REMOTE",
"PerPkg": "1",
- "PublicDescription": "Counts the number of cycles when the local HA tracker pool is not empty. This can be used with edge detect to identify the number of situations when the pool became empty. This should not be confused with RTID credit usage -- which must be tracked inside each cbo individually -- but represents the actual tracker buffer structure. In other words, this buffer could be completely empty, but there may still be credits in use by the CBos. This stat can be used in conjunction with the occupancy accumulation stat in order to calculate average queue occpancy. HA trackers are allocated as soon as a request enters the HA if an HT (Home Tracker) entry is available and is released after the snoop response and data return (or post in the case of a write) and the response is returned on the ring.; This filter includes only requests coming from remote sockets.",
+ "PublicDescription": "Counts the number of cycles when the local HA tracker pool is not empty. This can be used with edge detect to identify the number of situations when the pool became empty. This should not be confused with RTID credit usage -- which must be tracked inside each cbo individually -- but represents the actual tracker buffer structure. In other words, this buffer could be completely empty, but there may still be credits in use by the CBos. This stat can be used in conjunction with the occupancy accumulation stat in order to calculate average queue occupancy. HA trackers are allocated as soon as a request enters the HA if an HT (Home Tracker) entry is available and is released after the snoop response and data return (or post in the case of a write) and the response is returned on the ring.; This filter includes only requests coming from remote sockets.",
"UMask": "0x2",
"Unit": "HA"
},
@@ -3878,7 +3878,7 @@
"EventCode": "0x18",
"EventName": "UNC_H_WPQ_CYCLES_NO_REG_CREDITS.CHN0",
"PerPkg": "1",
- "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting writes from the HA into the iMC. In order to send writes into the memory controller, the HA must first acquire a credit for the iMC's WPQ (write pending queue). This queue is broken into regular credits/buffers that are used by general writes, and special requests such as ISOCH writes. This count only tracks the regular credits Common high banwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 0 only.",
+ "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting writes from the HA into the iMC. In order to send writes into the memory controller, the HA must first acquire a credit for the iMC's WPQ (write pending queue). This queue is broken into regular credits/buffers that are used by general writes, and special requests such as ISOCH writes. This count only tracks the regular credits Common high bandwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 0 only.",
"UMask": "0x1",
"Unit": "HA"
},
@@ -3888,7 +3888,7 @@
"EventCode": "0x18",
"EventName": "UNC_H_WPQ_CYCLES_NO_REG_CREDITS.CHN1",
"PerPkg": "1",
- "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting writes from the HA into the iMC. In order to send writes into the memory controller, the HA must first acquire a credit for the iMC's WPQ (write pending queue). This queue is broken into regular credits/buffers that are used by general writes, and special requests such as ISOCH writes. This count only tracks the regular credits Common high banwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 1 only.",
+ "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting writes from the HA into the iMC. In order to send writes into the memory controller, the HA must first acquire a credit for the iMC's WPQ (write pending queue). This queue is broken into regular credits/buffers that are used by general writes, and special requests such as ISOCH writes. This count only tracks the regular credits Common high bandwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 1 only.",
"UMask": "0x2",
"Unit": "HA"
},
@@ -3898,7 +3898,7 @@
"EventCode": "0x18",
"EventName": "UNC_H_WPQ_CYCLES_NO_REG_CREDITS.CHN2",
"PerPkg": "1",
- "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting writes from the HA into the iMC. In order to send writes into the memory controller, the HA must first acquire a credit for the iMC's WPQ (write pending queue). This queue is broken into regular credits/buffers that are used by general writes, and special requests such as ISOCH writes. This count only tracks the regular credits Common high banwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 2 only.",
+ "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting writes from the HA into the iMC. In order to send writes into the memory controller, the HA must first acquire a credit for the iMC's WPQ (write pending queue). This queue is broken into regular credits/buffers that are used by general writes, and special requests such as ISOCH writes. This count only tracks the regular credits Common high bandwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 2 only.",
"UMask": "0x4",
"Unit": "HA"
},
@@ -3908,7 +3908,7 @@
"EventCode": "0x18",
"EventName": "UNC_H_WPQ_CYCLES_NO_REG_CREDITS.CHN3",
"PerPkg": "1",
- "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting writes from the HA into the iMC. In order to send writes into the memory controller, the HA must first acquire a credit for the iMC's WPQ (write pending queue). This queue is broken into regular credits/buffers that are used by general writes, and special requests such as ISOCH writes. This count only tracks the regular credits Common high banwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 3 only.",
+ "PublicDescription": "Counts the number of cycles when there are no regular credits available for posting writes from the HA into the iMC. In order to send writes into the memory controller, the HA must first acquire a credit for the iMC's WPQ (write pending queue). This queue is broken into regular credits/buffers that are used by general writes, and special requests such as ISOCH writes. This count only tracks the regular credits Common high bandwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given time.; Filter for memory controller channel 3 only.",
"UMask": "0x8",
"Unit": "HA"
},
diff --git a/tools/perf/pmu-events/arch/x86/haswellx/uncore-interconnect.json b/tools/perf/pmu-events/arch/x86/haswellx/uncore-interconnect.json
index 121de411d312..8f73a8649b39 100644
--- a/tools/perf/pmu-events/arch/x86/haswellx/uncore-interconnect.json
+++ b/tools/perf/pmu-events/arch/x86/haswellx/uncore-interconnect.json
@@ -1,24 +1,4 @@
[
- {
- "BriefDescription": "Number of non data (control) flits transmitted . Derived from unc_q_txl_flits_g0.non_data",
- "Counter": "0,1,2,3",
- "EventName": "QPI_CTL_BANDWIDTH_TX",
- "PerPkg": "1",
- "PublicDescription": "Counts the number of flits transmitted across the QPI Link. It includes filters for Idle, protocol, and Data Flits. Each flit is made up of 80 bits of information (in addition to some ECC data). In full-width (L0) mode, flits are made up of four fits, each of which contains 20 bits of data (along with some additional ECC data). In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit. When one talks about QPI speed (for example, 8.0 GT/s), the transfers here refer to fits. Therefore, in L0, the system will transfer 1 flit at the rate of 1/4th the QPI speed. One can calculate the bandwidth of the link by taking: flits*80b/time. Note that this is not the same as data bandwidth. For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual data and an additional 16 bits of other information. To calculate data bandwidth, one should therefore do: data flits * 8B / time (for L0) or 4B instead of 8B for L0p.; Number of non-NULL non-data flits transmitted across QPI. This basically tracks the protocol overhead on the QPI link. One can get a good picture of the QPI-link characteristics by evaluating the protocol flits, data flits, and idle/null flits. This includes the header flits for data packets.",
- "ScaleUnit": "8Bytes",
- "UMask": "0x4",
- "Unit": "QPI"
- },
- {
- "BriefDescription": "Number of data flits transmitted . Derived from unc_q_txl_flits_g0.data",
- "Counter": "0,1,2,3",
- "EventName": "QPI_DATA_BANDWIDTH_TX",
- "PerPkg": "1",
- "PublicDescription": "Counts the number of flits transmitted across the QPI Link. It includes filters for Idle, protocol, and Data Flits. Each flit is made up of 80 bits of information (in addition to some ECC data). In full-width (L0) mode, flits are made up of four fits, each of which contains 20 bits of data (along with some additional ECC data). In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit. When one talks about QPI speed (for example, 8.0 GT/s), the transfers here refer to fits. Therefore, in L0, the system will transfer 1 flit at the rate of 1/4th the QPI speed. One can calculate the bandwidth of the link by taking: flits*80b/time. Note that this is not the same as data bandwidth. For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual data and an additional 16 bits of other information. To calculate data bandwidth, one should therefore do: data flits * 8B / time (for L0) or 4B instead of 8B for L0p.; Number of data flits transmitted over QPI. Each flit contains 64b of data. This includes both DRS and NCB data flits (coherent and non-coherent). This can be used to calculate the data bandwidth of the QPI link. One can get a good picture of the QPI-link characteristics by evaluating the protocol flits, data flits, and idle/null flits. This does not include the header flits that go in data packets.",
- "ScaleUnit": "8Bytes",
- "UMask": "0x2",
- "Unit": "QPI"
- },
{
"BriefDescription": "Total Write Cache Occupancy; Any Source",
"Counter": "0,1",
@@ -53,7 +33,7 @@
"EventCode": "0x13",
"EventName": "UNC_I_COHERENT_OPS.CLFLUSH",
"PerPkg": "1",
- "PublicDescription": "Counts the number of coherency related operations servied by the IRP",
+ "PublicDescription": "Counts the number of coherency related operations serviced by the IRP",
"UMask": "0x80",
"Unit": "IRP"
},
@@ -63,7 +43,7 @@
"EventCode": "0x13",
"EventName": "UNC_I_COHERENT_OPS.CRD",
"PerPkg": "1",
- "PublicDescription": "Counts the number of coherency related operations servied by the IRP",
+ "PublicDescription": "Counts the number of coherency related operations serviced by the IRP",
"UMask": "0x2",
"Unit": "IRP"
},
@@ -73,7 +53,7 @@
"EventCode": "0x13",
"EventName": "UNC_I_COHERENT_OPS.DRD",
"PerPkg": "1",
- "PublicDescription": "Counts the number of coherency related operations servied by the IRP",
+ "PublicDescription": "Counts the number of coherency related operations serviced by the IRP",
"UMask": "0x4",
"Unit": "IRP"
},
@@ -83,7 +63,7 @@
"EventCode": "0x13",
"EventName": "UNC_I_COHERENT_OPS.PCIDCAHINT",
"PerPkg": "1",
- "PublicDescription": "Counts the number of coherency related operations servied by the IRP",
+ "PublicDescription": "Counts the number of coherency related operations serviced by the IRP",
"UMask": "0x20",
"Unit": "IRP"
},
@@ -93,7 +73,7 @@
"EventCode": "0x13",
"EventName": "UNC_I_COHERENT_OPS.PCIRDCUR",
"PerPkg": "1",
- "PublicDescription": "Counts the number of coherency related operations servied by the IRP",
+ "PublicDescription": "Counts the number of coherency related operations serviced by the IRP",
"UMask": "0x1",
"Unit": "IRP"
},
@@ -103,7 +83,7 @@
"EventCode": "0x13",
"EventName": "UNC_I_COHERENT_OPS.PCITOM",
"PerPkg": "1",
- "PublicDescription": "Counts the number of coherency related operations servied by the IRP",
+ "PublicDescription": "Counts the number of coherency related operations serviced by the IRP",
"UMask": "0x10",
"Unit": "IRP"
},
@@ -113,7 +93,7 @@
"EventCode": "0x13",
"EventName": "UNC_I_COHERENT_OPS.RFO",
"PerPkg": "1",
- "PublicDescription": "Counts the number of coherency related operations servied by the IRP",
+ "PublicDescription": "Counts the number of coherency related operations serviced by the IRP",
"UMask": "0x8",
"Unit": "IRP"
},
@@ -123,7 +103,7 @@
"EventCode": "0x13",
"EventName": "UNC_I_COHERENT_OPS.WBMTOI",
"PerPkg": "1",
- "PublicDescription": "Counts the number of coherency related operations servied by the IRP",
+ "PublicDescription": "Counts the number of coherency related operations serviced by the IRP",
"UMask": "0x40",
"Unit": "IRP"
},
@@ -493,7 +473,7 @@
"EventCode": "0x16",
"EventName": "UNC_I_TRANSACTIONS.WRITES",
"PerPkg": "1",
- "PublicDescription": "Counts the number of Inbound transactions from the IRP to the Uncore. This can be filtered based on request type in addition to the source queue. Note the special filtering equation. We do OR-reduction on the request type. If the SOURCE bit is set, then we also do AND qualification based on the source portID.; Trackes only write requests. Each write request should have a prefetch, so there is no need to explicitly track these requests. For writes that are tickled and have to retry, the counter will be incremented for each retry.",
+ "PublicDescription": "Counts the number of Inbound transactions from the IRP to the Uncore. This can be filtered based on request type in addition to the source queue. Note the special filtering equation. We do OR-reduction on the request type. If the SOURCE bit is set, then we also do AND qualification based on the source portID.; Tracks only write requests. Each write request should have a prefetch, so there is no need to explicitly track these requests. For writes that are tickled and have to retry, the counter will be incremented for each retry.",
"UMask": "0x2",
"Unit": "IRP"
},
diff --git a/tools/perf/pmu-events/arch/x86/mapfile.csv b/tools/perf/pmu-events/arch/x86/mapfile.csv
index 903d6ada7060..71cf64060499 100644
--- a/tools/perf/pmu-events/arch/x86/mapfile.csv
+++ b/tools/perf/pmu-events/arch/x86/mapfile.csv
@@ -14,7 +14,7 @@ GenuineIntel-6-7A,v1.01,goldmontplus,core
GenuineIntel-6-B6,v1.05,grandridge,core
GenuineIntel-6-A[DE],v1.04,graniterapids,core
GenuineIntel-6-(3C|45|46),v36,haswell,core
-GenuineIntel-6-3F,v28,haswellx,core
+GenuineIntel-6-3F,v29,haswellx,core
GenuineIntel-6-7[DE],v1.22,icelake,core
GenuineIntel-6-6[AC],v1.26,icelakex,core
GenuineIntel-6-3A,v24,ivybridge,core
--
2.47.1.545.g3c1d2e2a6a-goog
© 2016 - 2024 Red Hat, Inc.