I/O memory is typically either mapped through direct calls to ioremap()
or subsystem / bus specific ones such as pci_iomap().
Even though subsystem / bus specific functions to map I/O memory are
based on ioremap() / iounmap() it is not desirable to re-implement them
in Rust.
Instead, implement a base type for I/O mapped memory, which generically
provides the corresponding accessors, such as `Io::readb` or
`Io:try_readb`.
`Io` supports an optional const generic, such that a driver can indicate
the minimal expected and required size of the mapping at compile time.
Correspondingly, calls to the 'non-try' accessors, support compile time
checks of the I/O memory offset to read / write, while the 'try'
accessors, provide boundary checks on runtime.
`IoRaw` is meant to be embedded into a structure (e.g. pci::Bar or
io::IoMem) which creates the actual I/O memory mapping and initializes
`IoRaw` accordingly.
To ensure that I/O mapped memory can't out-live the device it may be
bound to, subsystems must embed the corresponding I/O memory type (e.g.
pci::Bar) into a `Devres` container, such that it gets revoked once the
device is unbound.
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
---
rust/helpers/helpers.c | 1 +
rust/helpers/io.c | 101 ++++++++++++++++
rust/kernel/io.rs | 260 +++++++++++++++++++++++++++++++++++++++++
rust/kernel/lib.rs | 1 +
4 files changed, 363 insertions(+)
create mode 100644 rust/helpers/io.c
create mode 100644 rust/kernel/io.rs
diff --git a/rust/helpers/helpers.c b/rust/helpers/helpers.c
index 060750af6524..63f9b1da179f 100644
--- a/rust/helpers/helpers.c
+++ b/rust/helpers/helpers.c
@@ -14,6 +14,7 @@
#include "cred.c"
#include "err.c"
#include "fs.c"
+#include "io.c"
#include "jump_label.c"
#include "kunit.c"
#include "mutex.c"
diff --git a/rust/helpers/io.c b/rust/helpers/io.c
new file mode 100644
index 000000000000..1dde6374c0e2
--- /dev/null
+++ b/rust/helpers/io.c
@@ -0,0 +1,101 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include <linux/io.h>
+
+void __iomem *rust_helper_ioremap(phys_addr_t offset, size_t size)
+{
+ return ioremap(offset, size);
+}
+
+void rust_helper_iounmap(volatile void __iomem *addr)
+{
+ return iounmap(addr);
+}
+
+u8 rust_helper_readb(const volatile void __iomem *addr)
+{
+ return readb(addr);
+}
+
+u16 rust_helper_readw(const volatile void __iomem *addr)
+{
+ return readw(addr);
+}
+
+u32 rust_helper_readl(const volatile void __iomem *addr)
+{
+ return readl(addr);
+}
+
+#ifdef CONFIG_64BIT
+u64 rust_helper_readq(const volatile void __iomem *addr)
+{
+ return readq(addr);
+}
+#endif
+
+void rust_helper_writeb(u8 value, volatile void __iomem *addr)
+{
+ writeb(value, addr);
+}
+
+void rust_helper_writew(u16 value, volatile void __iomem *addr)
+{
+ writew(value, addr);
+}
+
+void rust_helper_writel(u32 value, volatile void __iomem *addr)
+{
+ writel(value, addr);
+}
+
+#ifdef CONFIG_64BIT
+void rust_helper_writeq(u64 value, volatile void __iomem *addr)
+{
+ writeq(value, addr);
+}
+#endif
+
+u8 rust_helper_readb_relaxed(const volatile void __iomem *addr)
+{
+ return readb_relaxed(addr);
+}
+
+u16 rust_helper_readw_relaxed(const volatile void __iomem *addr)
+{
+ return readw_relaxed(addr);
+}
+
+u32 rust_helper_readl_relaxed(const volatile void __iomem *addr)
+{
+ return readl_relaxed(addr);
+}
+
+#ifdef CONFIG_64BIT
+u64 rust_helper_readq_relaxed(const volatile void __iomem *addr)
+{
+ return readq_relaxed(addr);
+}
+#endif
+
+void rust_helper_writeb_relaxed(u8 value, volatile void __iomem *addr)
+{
+ writeb_relaxed(value, addr);
+}
+
+void rust_helper_writew_relaxed(u16 value, volatile void __iomem *addr)
+{
+ writew_relaxed(value, addr);
+}
+
+void rust_helper_writel_relaxed(u32 value, volatile void __iomem *addr)
+{
+ writel_relaxed(value, addr);
+}
+
+#ifdef CONFIG_64BIT
+void rust_helper_writeq_relaxed(u64 value, volatile void __iomem *addr)
+{
+ writeq_relaxed(value, addr);
+}
+#endif
diff --git a/rust/kernel/io.rs b/rust/kernel/io.rs
new file mode 100644
index 000000000000..36aa2ec1bcc8
--- /dev/null
+++ b/rust/kernel/io.rs
@@ -0,0 +1,260 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Memory-mapped IO.
+//!
+//! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
+
+use crate::error::{code::EINVAL, Result};
+use crate::{bindings, build_assert};
+
+/// Raw representation of an MMIO region.
+///
+/// By itself, the existence of an instance of this structure does not provide any guarantees that
+/// the represented MMIO region does exist or is properly mapped.
+///
+/// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
+/// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
+/// any guarantees are given.
+pub struct IoRaw<const SIZE: usize = 0> {
+ addr: usize,
+ maxsize: usize,
+}
+
+impl<const SIZE: usize> IoRaw<SIZE> {
+ /// Returns a new `IoRaw` instance on success, an error otherwise.
+ pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
+ if maxsize < SIZE {
+ return Err(EINVAL);
+ }
+
+ Ok(Self { addr, maxsize })
+ }
+
+ /// Returns the base address of the MMIO region.
+ #[inline]
+ pub fn addr(&self) -> usize {
+ self.addr
+ }
+
+ /// Returns the maximum size of the MMIO region.
+ #[inline]
+ pub fn maxsize(&self) -> usize {
+ self.maxsize
+ }
+}
+
+/// IO-mapped memory, starting at the base address @addr and spanning @maxlen bytes.
+///
+/// The creator (usually a subsystem / bus such as PCI) is responsible for creating the
+/// mapping, performing an additional region request etc.
+///
+/// # Invariant
+///
+/// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size
+/// `maxsize`.
+///
+/// # Examples
+///
+/// ```no_run
+/// # use kernel::{bindings, io::{Io, IoRaw}};
+/// # use core::ops::Deref;
+///
+/// // See also [`pci::Bar`] for a real example.
+/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
+///
+/// impl<const SIZE: usize> IoMem<SIZE> {
+/// /// # Safety
+/// ///
+/// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
+/// /// virtual address space.
+/// unsafe fn new(paddr: usize) -> Result<Self>{
+/// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
+/// // valid for `ioremap`.
+/// let addr = unsafe { bindings::ioremap(paddr as _, SIZE.try_into().unwrap()) };
+/// if addr.is_null() {
+/// return Err(ENOMEM);
+/// }
+///
+/// Ok(IoMem(IoRaw::new(addr as _, SIZE)?))
+/// }
+/// }
+///
+/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
+/// fn drop(&mut self) {
+/// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
+/// unsafe { bindings::iounmap(self.0.addr() as _); };
+/// }
+/// }
+///
+/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
+/// type Target = Io<SIZE>;
+///
+/// fn deref(&self) -> &Self::Target {
+/// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
+/// unsafe { Io::from_raw(&self.0) }
+/// }
+/// }
+///
+///# fn no_run() -> Result<(), Error> {
+/// // SAFETY: Invalid usage for example purposes.
+/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
+/// iomem.writel(0x42, 0x0);
+/// assert!(iomem.try_writel(0x42, 0x0).is_ok());
+/// assert!(iomem.try_writel(0x42, 0x4).is_err());
+/// # Ok(())
+/// # }
+/// ```
+#[repr(transparent)]
+pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
+
+macro_rules! define_read {
+ ($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
+ /// Read IO data from a given offset known at compile time.
+ ///
+ /// Bound checks are performed on compile time, hence if the offset is not known at compile
+ /// time, the build will fail.
+ $(#[$attr])*
+ #[inline]
+ pub fn $name(&self, offset: usize) -> $type_name {
+ let addr = self.io_addr_assert::<$type_name>(offset);
+
+ // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
+ unsafe { bindings::$name(addr as _) }
+ }
+
+ /// Read IO data from a given offset.
+ ///
+ /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
+ /// out of bounds.
+ $(#[$attr])*
+ pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
+ let addr = self.io_addr::<$type_name>(offset)?;
+
+ // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
+ Ok(unsafe { bindings::$name(addr as _) })
+ }
+ };
+}
+
+macro_rules! define_write {
+ ($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
+ /// Write IO data from a given offset known at compile time.
+ ///
+ /// Bound checks are performed on compile time, hence if the offset is not known at compile
+ /// time, the build will fail.
+ $(#[$attr])*
+ #[inline]
+ pub fn $name(&self, value: $type_name, offset: usize) {
+ let addr = self.io_addr_assert::<$type_name>(offset);
+
+ // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
+ unsafe { bindings::$name(value, addr as _, ) }
+ }
+
+ /// Write IO data from a given offset.
+ ///
+ /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
+ /// out of bounds.
+ $(#[$attr])*
+ pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
+ let addr = self.io_addr::<$type_name>(offset)?;
+
+ // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
+ unsafe { bindings::$name(value, addr as _) }
+ Ok(())
+ }
+ };
+}
+
+impl<const SIZE: usize> Io<SIZE> {
+ /// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
+ /// `maxsize`.
+ pub unsafe fn from_raw<'a>(raw: &IoRaw<SIZE>) -> &'a Self {
+ // SAFETY: `Io` is a transparent wrapper around `IoRaw`.
+ unsafe { &*core::ptr::from_ref(raw).cast() }
+ }
+
+ /// Returns the base address of this mapping.
+ #[inline]
+ pub fn addr(&self) -> usize {
+ self.0.addr()
+ }
+
+ /// Returns the maximum size of this mapping.
+ #[inline]
+ pub fn maxsize(&self) -> usize {
+ self.0.maxsize()
+ }
+
+ #[inline]
+ const fn offset_valid<U>(offset: usize, size: usize) -> bool {
+ let type_size = core::mem::size_of::<U>();
+ if let Some(end) = offset.checked_add(type_size) {
+ end <= size && offset % type_size == 0
+ } else {
+ false
+ }
+ }
+
+ #[inline]
+ fn io_addr<U>(&self, offset: usize) -> Result<usize> {
+ if !Self::offset_valid::<U>(offset, self.maxsize()) {
+ return Err(EINVAL);
+ }
+
+ // Probably no need to check, since the safety requirements of `Self::new` guarantee that
+ // this can't overflow.
+ self.addr().checked_add(offset).ok_or(EINVAL)
+ }
+
+ #[inline]
+ fn io_addr_assert<U>(&self, offset: usize) -> usize {
+ build_assert!(Self::offset_valid::<U>(offset, SIZE));
+
+ self.addr() + offset
+ }
+
+ define_read!(readb, try_readb, u8);
+ define_read!(readw, try_readw, u16);
+ define_read!(readl, try_readl, u32);
+ define_read!(
+ #[cfg(CONFIG_64BIT)]
+ readq,
+ try_readq,
+ u64
+ );
+
+ define_read!(readb_relaxed, try_readb_relaxed, u8);
+ define_read!(readw_relaxed, try_readw_relaxed, u16);
+ define_read!(readl_relaxed, try_readl_relaxed, u32);
+ define_read!(
+ #[cfg(CONFIG_64BIT)]
+ readq_relaxed,
+ try_readq_relaxed,
+ u64
+ );
+
+ define_write!(writeb, try_writeb, u8);
+ define_write!(writew, try_writew, u16);
+ define_write!(writel, try_writel, u32);
+ define_write!(
+ #[cfg(CONFIG_64BIT)]
+ writeq,
+ try_writeq,
+ u64
+ );
+
+ define_write!(writeb_relaxed, try_writeb_relaxed, u8);
+ define_write!(writew_relaxed, try_writew_relaxed, u16);
+ define_write!(writel_relaxed, try_writel_relaxed, u32);
+ define_write!(
+ #[cfg(CONFIG_64BIT)]
+ writeq_relaxed,
+ try_writeq_relaxed,
+ u64
+ );
+}
diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
index 200c5f99a805..d1f30b1a05fb 100644
--- a/rust/kernel/lib.rs
+++ b/rust/kernel/lib.rs
@@ -79,6 +79,7 @@
#[doc(hidden)]
pub use bindings;
+pub mod io;
pub use macros;
pub use uapi;
--
2.47.0
Hi Danilo,
> On 5 Dec 2024, at 11:14, Danilo Krummrich <dakr@kernel.org> wrote:
>
> I/O memory is typically either mapped through direct calls to ioremap()
> or subsystem / bus specific ones such as pci_iomap().
>
> Even though subsystem / bus specific functions to map I/O memory are
> based on ioremap() / iounmap() it is not desirable to re-implement them
> in Rust.
>
> Instead, implement a base type for I/O mapped memory, which generically
> provides the corresponding accessors, such as `Io::readb` or
> `Io:try_readb`.
>
> `Io` supports an optional const generic, such that a driver can indicate
> the minimal expected and required size of the mapping at compile time.
> Correspondingly, calls to the 'non-try' accessors, support compile time
> checks of the I/O memory offset to read / write, while the 'try'
> accessors, provide boundary checks on runtime.
>
> `IoRaw` is meant to be embedded into a structure (e.g. pci::Bar or
> io::IoMem) which creates the actual I/O memory mapping and initializes
Maybe the in-flight platform::IoMem would be the other example? I see no `io::IoMem` in
your patch other than the one in the doctest.
> `IoRaw` accordingly.
>
> To ensure that I/O mapped memory can't out-live the device it may be
> bound to, subsystems must embed the corresponding I/O memory type (e.g.
> pci::Bar) into a `Devres` container, such that it gets revoked once the
> device is unbound.
>
> Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> ---
> rust/helpers/helpers.c | 1 +
> rust/helpers/io.c | 101 ++++++++++++++++
> rust/kernel/io.rs | 260 +++++++++++++++++++++++++++++++++++++++++
> rust/kernel/lib.rs | 1 +
> 4 files changed, 363 insertions(+)
> create mode 100644 rust/helpers/io.c
> create mode 100644 rust/kernel/io.rs
>
> diff --git a/rust/helpers/helpers.c b/rust/helpers/helpers.c
> index 060750af6524..63f9b1da179f 100644
> --- a/rust/helpers/helpers.c
> +++ b/rust/helpers/helpers.c
> @@ -14,6 +14,7 @@
> #include "cred.c"
> #include "err.c"
> #include "fs.c"
> +#include "io.c"
> #include "jump_label.c"
> #include "kunit.c"
> #include "mutex.c"
> diff --git a/rust/helpers/io.c b/rust/helpers/io.c
> new file mode 100644
> index 000000000000..1dde6374c0e2
> --- /dev/null
> +++ b/rust/helpers/io.c
> @@ -0,0 +1,101 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +#include <linux/io.h>
> +
> +void __iomem *rust_helper_ioremap(phys_addr_t offset, size_t size)
> +{
> + return ioremap(offset, size);
> +}
> +
> +void rust_helper_iounmap(volatile void __iomem *addr)
> +{
> + return iounmap(addr);
> +}
> +
> +u8 rust_helper_readb(const volatile void __iomem *addr)
> +{
> + return readb(addr);
> +}
> +
> +u16 rust_helper_readw(const volatile void __iomem *addr)
> +{
> + return readw(addr);
> +}
> +
> +u32 rust_helper_readl(const volatile void __iomem *addr)
> +{
> + return readl(addr);
> +}
> +
> +#ifdef CONFIG_64BIT
> +u64 rust_helper_readq(const volatile void __iomem *addr)
> +{
> + return readq(addr);
> +}
> +#endif
> +
> +void rust_helper_writeb(u8 value, volatile void __iomem *addr)
> +{
> + writeb(value, addr);
> +}
> +
> +void rust_helper_writew(u16 value, volatile void __iomem *addr)
> +{
> + writew(value, addr);
> +}
> +
> +void rust_helper_writel(u32 value, volatile void __iomem *addr)
> +{
> + writel(value, addr);
> +}
> +
> +#ifdef CONFIG_64BIT
> +void rust_helper_writeq(u64 value, volatile void __iomem *addr)
> +{
> + writeq(value, addr);
> +}
> +#endif
> +
> +u8 rust_helper_readb_relaxed(const volatile void __iomem *addr)
> +{
> + return readb_relaxed(addr);
> +}
> +
> +u16 rust_helper_readw_relaxed(const volatile void __iomem *addr)
> +{
> + return readw_relaxed(addr);
> +}
> +
> +u32 rust_helper_readl_relaxed(const volatile void __iomem *addr)
> +{
> + return readl_relaxed(addr);
> +}
> +
> +#ifdef CONFIG_64BIT
> +u64 rust_helper_readq_relaxed(const volatile void __iomem *addr)
> +{
> + return readq_relaxed(addr);
> +}
> +#endif
> +
> +void rust_helper_writeb_relaxed(u8 value, volatile void __iomem *addr)
> +{
> + writeb_relaxed(value, addr);
> +}
> +
> +void rust_helper_writew_relaxed(u16 value, volatile void __iomem *addr)
> +{
> + writew_relaxed(value, addr);
> +}
> +
> +void rust_helper_writel_relaxed(u32 value, volatile void __iomem *addr)
> +{
> + writel_relaxed(value, addr);
> +}
> +
> +#ifdef CONFIG_64BIT
> +void rust_helper_writeq_relaxed(u64 value, volatile void __iomem *addr)
> +{
> + writeq_relaxed(value, addr);
> +}
> +#endif
> diff --git a/rust/kernel/io.rs b/rust/kernel/io.rs
> new file mode 100644
> index 000000000000..36aa2ec1bcc8
> --- /dev/null
> +++ b/rust/kernel/io.rs
> @@ -0,0 +1,260 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +//! Memory-mapped IO.
> +//!
> +//! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
> +
> +use crate::error::{code::EINVAL, Result};
> +use crate::{bindings, build_assert};
> +
> +/// Raw representation of an MMIO region.
> +///
> +/// By itself, the existence of an instance of this structure does not provide any guarantees that
> +/// the represented MMIO region does exist or is properly mapped.
> +///
> +/// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
> +/// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
> +/// any guarantees are given.
> +pub struct IoRaw<const SIZE: usize = 0> {
> + addr: usize,
> + maxsize: usize,
> +}
> +
> +impl<const SIZE: usize> IoRaw<SIZE> {
> + /// Returns a new `IoRaw` instance on success, an error otherwise.
> + pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
> + if maxsize < SIZE {
> + return Err(EINVAL);
> + }
> +
> + Ok(Self { addr, maxsize })
> + }
> +
> + /// Returns the base address of the MMIO region.
> + #[inline]
> + pub fn addr(&self) -> usize {
> + self.addr
> + }
> +
> + /// Returns the maximum size of the MMIO region.
> + #[inline]
> + pub fn maxsize(&self) -> usize {
> + self.maxsize
> + }
> +}
> +
> +/// IO-mapped memory, starting at the base address @addr and spanning @maxlen bytes.
> +///
> +/// The creator (usually a subsystem / bus such as PCI) is responsible for creating the
> +/// mapping, performing an additional region request etc.
> +///
> +/// # Invariant
> +///
> +/// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size
> +/// `maxsize`.
> +///
> +/// # Examples
> +///
> +/// ```no_run
> +/// # use kernel::{bindings, io::{Io, IoRaw}};
> +/// # use core::ops::Deref;
> +///
> +/// // See also [`pci::Bar`] for a real example.
> +/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
> +///
> +/// impl<const SIZE: usize> IoMem<SIZE> {
> +/// /// # Safety
> +/// ///
> +/// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
> +/// /// virtual address space.
> +/// unsafe fn new(paddr: usize) -> Result<Self>{
> +/// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
> +/// // valid for `ioremap`.
> +/// let addr = unsafe { bindings::ioremap(paddr as _, SIZE.try_into().unwrap()) };
> +/// if addr.is_null() {
> +/// return Err(ENOMEM);
> +/// }
> +///
> +/// Ok(IoMem(IoRaw::new(addr as _, SIZE)?))
> +/// }
> +/// }
> +///
> +/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
> +/// fn drop(&mut self) {
> +/// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
> +/// unsafe { bindings::iounmap(self.0.addr() as _); };
> +/// }
> +/// }
> +///
> +/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
> +/// type Target = Io<SIZE>;
> +///
> +/// fn deref(&self) -> &Self::Target {
> +/// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
> +/// unsafe { Io::from_raw(&self.0) }
> +/// }
> +/// }
> +///
> +///# fn no_run() -> Result<(), Error> {
> +/// // SAFETY: Invalid usage for example purposes.
> +/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
> +/// iomem.writel(0x42, 0x0);
> +/// assert!(iomem.try_writel(0x42, 0x0).is_ok());
> +/// assert!(iomem.try_writel(0x42, 0x4).is_err());
> +/// # Ok(())
> +/// # }
> +/// ```
> +#[repr(transparent)]
> +pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
> +
> +macro_rules! define_read {
> + ($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
> + /// Read IO data from a given offset known at compile time.
> + ///
> + /// Bound checks are performed on compile time, hence if the offset is not known at compile
> + /// time, the build will fail.
> + $(#[$attr])*
> + #[inline]
> + pub fn $name(&self, offset: usize) -> $type_name {
> + let addr = self.io_addr_assert::<$type_name>(offset);
> +
> + // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> + unsafe { bindings::$name(addr as _) }
> + }
> +
> + /// Read IO data from a given offset.
> + ///
> + /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
> + /// out of bounds.
> + $(#[$attr])*
> + pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
> + let addr = self.io_addr::<$type_name>(offset)?;
> +
> + // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> + Ok(unsafe { bindings::$name(addr as _) })
> + }
> + };
> +}
> +
> +macro_rules! define_write {
> + ($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
> + /// Write IO data from a given offset known at compile time.
> + ///
> + /// Bound checks are performed on compile time, hence if the offset is not known at compile
> + /// time, the build will fail.
> + $(#[$attr])*
> + #[inline]
> + pub fn $name(&self, value: $type_name, offset: usize) {
> + let addr = self.io_addr_assert::<$type_name>(offset);
> +
> + // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> + unsafe { bindings::$name(value, addr as _, ) }
> + }
> +
> + /// Write IO data from a given offset.
> + ///
> + /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
> + /// out of bounds.
> + $(#[$attr])*
> + pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
> + let addr = self.io_addr::<$type_name>(offset)?;
> +
> + // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> + unsafe { bindings::$name(value, addr as _) }
> + Ok(())
> + }
> + };
> +}
> +
> +impl<const SIZE: usize> Io<SIZE> {
> + /// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
> + ///
> + /// # Safety
> + ///
> + /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
> + /// `maxsize`.
> + pub unsafe fn from_raw<'a>(raw: &IoRaw<SIZE>) -> &'a Self {
> + // SAFETY: `Io` is a transparent wrapper around `IoRaw`.
> + unsafe { &*core::ptr::from_ref(raw).cast() }
> + }
> +
> + /// Returns the base address of this mapping.
> + #[inline]
> + pub fn addr(&self) -> usize {
> + self.0.addr()
> + }
> +
> + /// Returns the maximum size of this mapping.
> + #[inline]
> + pub fn maxsize(&self) -> usize {
> + self.0.maxsize()
> + }
> +
> + #[inline]
> + const fn offset_valid<U>(offset: usize, size: usize) -> bool {
> + let type_size = core::mem::size_of::<U>();
> + if let Some(end) = offset.checked_add(type_size) {
> + end <= size && offset % type_size == 0
> + } else {
> + false
> + }
> + }
> +
> + #[inline]
> + fn io_addr<U>(&self, offset: usize) -> Result<usize> {
> + if !Self::offset_valid::<U>(offset, self.maxsize()) {
> + return Err(EINVAL);
> + }
> +
> + // Probably no need to check, since the safety requirements of `Self::new` guarantee that
> + // this can't overflow.
> + self.addr().checked_add(offset).ok_or(EINVAL)
> + }
> +
> + #[inline]
> + fn io_addr_assert<U>(&self, offset: usize) -> usize {
> + build_assert!(Self::offset_valid::<U>(offset, SIZE));
> +
> + self.addr() + offset
> + }
> +
> + define_read!(readb, try_readb, u8);
> + define_read!(readw, try_readw, u16);
> + define_read!(readl, try_readl, u32);
> + define_read!(
> + #[cfg(CONFIG_64BIT)]
> + readq,
> + try_readq,
> + u64
> + );
> +
> + define_read!(readb_relaxed, try_readb_relaxed, u8);
> + define_read!(readw_relaxed, try_readw_relaxed, u16);
> + define_read!(readl_relaxed, try_readl_relaxed, u32);
> + define_read!(
> + #[cfg(CONFIG_64BIT)]
> + readq_relaxed,
> + try_readq_relaxed,
> + u64
> + );
> +
> + define_write!(writeb, try_writeb, u8);
> + define_write!(writew, try_writew, u16);
> + define_write!(writel, try_writel, u32);
> + define_write!(
> + #[cfg(CONFIG_64BIT)]
> + writeq,
> + try_writeq,
> + u64
> + );
> +
> + define_write!(writeb_relaxed, try_writeb_relaxed, u8);
> + define_write!(writew_relaxed, try_writew_relaxed, u16);
> + define_write!(writel_relaxed, try_writel_relaxed, u32);
> + define_write!(
> + #[cfg(CONFIG_64BIT)]
> + writeq_relaxed,
> + try_writeq_relaxed,
> + u64
> + );
> +}
> diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
> index 200c5f99a805..d1f30b1a05fb 100644
> --- a/rust/kernel/lib.rs
> +++ b/rust/kernel/lib.rs
> @@ -79,6 +79,7 @@
>
> #[doc(hidden)]
> pub use bindings;
> +pub mod io;
> pub use macros;
> pub use uapi;
>
> --
> 2.47.0
>
I rebased platform::IoMem on top of this, and it still works fine.
As I said, I am testing it by modifying the compatible in `rust_driver_platform`, and
I’ve been able to successfully map and read from a memory-mapped device register.
It’s a read-only register containing some information about the device, and the value
read matches what we get in the C driver.
Tested-by: Daniel Almeida <daniel.almeida@collabora.com>
Reviewed-by: Daniel Almeida <daniel.almeida@collabora.com>
On Thu, Dec 5, 2024 at 3:16 PM Danilo Krummrich <dakr@kernel.org> wrote:
>
> I/O memory is typically either mapped through direct calls to ioremap()
> or subsystem / bus specific ones such as pci_iomap().
>
> Even though subsystem / bus specific functions to map I/O memory are
> based on ioremap() / iounmap() it is not desirable to re-implement them
> in Rust.
>
> Instead, implement a base type for I/O mapped memory, which generically
> provides the corresponding accessors, such as `Io::readb` or
> `Io:try_readb`.
>
> `Io` supports an optional const generic, such that a driver can indicate
> the minimal expected and required size of the mapping at compile time.
> Correspondingly, calls to the 'non-try' accessors, support compile time
> checks of the I/O memory offset to read / write, while the 'try'
> accessors, provide boundary checks on runtime.
>
> `IoRaw` is meant to be embedded into a structure (e.g. pci::Bar or
> io::IoMem) which creates the actual I/O memory mapping and initializes
> `IoRaw` accordingly.
>
> To ensure that I/O mapped memory can't out-live the device it may be
> bound to, subsystems must embed the corresponding I/O memory type (e.g.
> pci::Bar) into a `Devres` container, such that it gets revoked once the
> device is unbound.
>
> Signed-off-by: Danilo Krummrich <dakr@kernel.org>
One nit below. With that addressed:
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
> +impl<const SIZE: usize> Io<SIZE> {
> + /// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
> + ///
> + /// # Safety
> + ///
> + /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
> + /// `maxsize`.
> + pub unsafe fn from_raw<'a>(raw: &IoRaw<SIZE>) -> &'a Self {
I would use this signature:
pub unsafe fn from_raw(raw: &IoRaw<SIZE>) -> &Self;
Otherwise, you're saying that the returned reference is allowed to
outlive the IoRaw instance, which wouldn't be okay.
Alice
© 2016 - 2025 Red Hat, Inc.