[RFC v2 13/13] rust: sync: rcu: Add RCU protected pointer

Boqun Feng posted 13 patches 3 weeks, 2 days ago
[RFC v2 13/13] rust: sync: rcu: Add RCU protected pointer
Posted by Boqun Feng 3 weeks, 2 days ago
RCU protected pointers are an atomic pointer that can be loaded and
dereferenced by mulitple RCU readers, but only one updater/writer can
change the value (following a read-copy-update pattern usually).

This is useful in the case where data is read-mostly. The rationale of
this patch is to provide a proof of concept on how RCU should be exposed
to the Rust world, and it also serves as an example for atomic usage.

Similar mechanisms like ArcSwap [1] are already widely used.

Provide a `Rcu<P>` type with an atomic pointer implementation. `P` has
to be a `ForeignOwnable`, which means the ownership of a object can be
represented by a pointer-size value.

`Rcu::dereference()` requires a RCU Guard, which means dereferencing is
only valid under RCU read lock protection.

`Rcu::read_copy_update()` is the operation for updaters, it requries a
`Pin<&mut Self>` for exclusive accesses, since RCU updaters are normally
exclusive with each other.

A lot of RCU functionalities including asynchronously free (call_rcu()
and kfree_rcu()) are still missing, and will be the future work.

Also, we still need language changes like field projection [2] to
provide better ergonomic.

Acknowledgment: this work is based on a lot of productive discussions
and hard work from others, these are the ones I can remember (sorry if I
forgot your contribution):

* Wedson started the work on RCU field projection and Benno followed it
  up and had been working on it as a more general language feature.
  Also, Gary's field-projection repo [3] has been used as an example for
  related discussions.

* During Kangrejos 2023 [4], Gary, Benno and Alice provided a lot of
  feedbacks on the talk from Paul and me: "If you want to use RCU in
  Rust for Linux kernel..."

* During a recent discussion among Benno, Paul and me, Benno suggested
  using `Pin<&mut>` to guarantee the exclusive access on updater
  operations.

Link: https://crates.io/crates/arc-swap [1]
Link: https://rust-lang.zulipchat.com/#narrow/channel/213817-t-lang/topic/Field.20Projections/near/474648059 [2]
Link: https://github.com/nbdd0121/field-projection [3]
Link: https://kangrejos.com/2023 [4]
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
---
 rust/kernel/sync/rcu.rs | 269 +++++++++++++++++++++++++++++++++++++++-
 1 file changed, 268 insertions(+), 1 deletion(-)

diff --git a/rust/kernel/sync/rcu.rs b/rust/kernel/sync/rcu.rs
index 5a35495f69a4..8326b2e0986a 100644
--- a/rust/kernel/sync/rcu.rs
+++ b/rust/kernel/sync/rcu.rs
@@ -5,7 +5,11 @@
 //! C header: [`include/linux/rcupdate.h`](srctree/include/linux/rcupdate.h)
 
 use crate::bindings;
-use core::marker::PhantomData;
+use crate::{
+    sync::atomic::{Atomic, Relaxed, Release},
+    types::ForeignOwnable,
+};
+use core::{marker::PhantomData, pin::Pin, ptr::NonNull};
 
 /// Evidence that the RCU read side lock is held on the current thread/CPU.
 ///
@@ -50,3 +54,266 @@ fn drop(&mut self) {
 pub fn read_lock() -> Guard {
     Guard::new()
 }
+
+/// An RCU protected pointer, the pointed object is protected by RCU.
+///
+/// # Invariants
+///
+/// Either the pointer is null, or it points to a return value of [`P::into_foreign`] and the atomic
+/// variable exclusively owns the pointer.
+pub struct Rcu<P: ForeignOwnable>(Atomic<*mut core::ffi::c_void>, PhantomData<P>);
+
+/// A pointer that has been unpublished, but hasn't waited for a grace period yet.
+///
+/// The pointed object may still have an existing RCU reader. Therefore a grace period is needed to
+/// free the object.
+///
+/// # Invariants
+///
+/// The pointer has to be a return value of [`P::into_foreign`] and [`Self`] exclusively owns the
+/// pointer.
+pub struct RcuOld<P: ForeignOwnable>(NonNull<core::ffi::c_void>, PhantomData<P>);
+
+impl<P: ForeignOwnable> Drop for RcuOld<P> {
+    fn drop(&mut self) {
+        // SAFETY: As long as called in a sleepable context, which should be checked by klint,
+        // `synchronize_rcu()` is safe to call.
+        unsafe {
+            bindings::synchronize_rcu();
+        }
+
+        // SAFETY: `self.0` is a return value of `P::into_foreign()`, so it's safe to call
+        // `from_foreign()` on it. Plus, the above `synchronize_rcu()` guarantees no existing
+        // `ForeignOwnable::borrow()` anymore.
+        let p: P = unsafe { P::from_foreign(self.0.as_ptr()) };
+        drop(p);
+    }
+}
+
+impl<P: ForeignOwnable> Rcu<P> {
+    /// Creates a new RCU pointer.
+    pub fn new(p: P) -> Self {
+        // INVARIANTS: The return value of `p.into_foreign()` is directly stored in the atomic
+        // variable.
+        Self(Atomic::new(p.into_foreign().cast_mut()), PhantomData)
+    }
+
+    /// Dereferences the protected object.
+    ///
+    /// Returns `Some(b)`, where `b` is a reference-like borrowed type, if the pointer is not null,
+    /// otherwise returns `None`.
+    ///
+    /// # Examples
+    ///
+    /// ```rust
+    /// # use kernel::alloc::{flags, KBox};
+    /// use kernel::sync::rcu::{self, Rcu};
+    ///
+    /// let x = Rcu::new(KBox::new(100i32, flags::GFP_KERNEL)?);
+    ///
+    /// let g = rcu::read_lock();
+    /// // Read in under RCU read lock protection.
+    /// let v = x.dereference(&g);
+    ///
+    /// assert_eq!(v, Some(&100i32));
+    ///
+    /// # Ok::<(), Error>(())
+    /// ```
+    ///
+    /// Note the borrowed access can outlive the reference of the [`Rcu<P>`], this is because as
+    /// long as the RCU read lock is held, the pointed object should remain valid.
+    ///
+    /// In the following case, the main thread is responsible for the ownership of `shared`, i.e. it
+    /// will drop it eventually, and a work item can temporarily access the `shared` via `cloned`,
+    /// but the use of the dereferenced object doesn't depend on `cloned`'s existence.
+    ///
+    /// ```rust
+    /// # use kernel::alloc::{flags, KBox};
+    /// # use kernel::workqueue::system;
+    /// # use kernel::sync::{Arc, atomic::{Atomic, Acquire, Release}};
+    /// use kernel::sync::rcu::{self, Rcu};
+    ///
+    /// struct Config {
+    ///     a: i32,
+    ///     b: i32,
+    ///     c: i32,
+    /// }
+    ///
+    /// let config = KBox::new(Config { a: 1, b: 2, c: 3 }, flags::GFP_KERNEL)?;
+    ///
+    /// let shared = Arc::new(Rcu::new(config), flags::GFP_KERNEL)?;
+    /// let cloned = shared.clone();
+    ///
+    /// // Use atomic to simulate a special refcounting.
+    /// static FLAG: Atomic<i32> = Atomic::new(0);
+    ///
+    /// system().try_spawn(flags::GFP_KERNEL, move || {
+    ///     let g = rcu::read_lock();
+    ///     let v = cloned.dereference(&g).unwrap();
+    ///     drop(cloned); // release reference to `shared`.
+    ///     FLAG.store(1, Release);
+    ///
+    ///     // but still need to access `v`.
+    ///     assert_eq!(v.a, 1);
+    ///     drop(g);
+    /// });
+    ///
+    /// // Wait until `cloned` dropped.
+    /// while FLAG.load(Acquire) == 0 {
+    ///     // SAFETY: Sleep should be safe.
+    ///     unsafe { kernel::bindings::schedule(); }
+    /// }
+    ///
+    /// drop(shared);
+    ///
+    /// # Ok::<(), Error>(())
+    /// ```
+    pub fn dereference<'rcu>(&self, _rcu_guard: &'rcu Guard) -> Option<P::Borrowed<'rcu>> {
+        // Ordering: Address dependency pairs with the `store(Release)` in read_copy_update().
+        let ptr = self.0.load(Relaxed);
+
+        if !ptr.is_null() {
+            // SAFETY:
+            // - Since `ptr` is not null, so it has to be a return value of `P::into_foreign()`.
+            // - The returned `Borrowed<'rcu>` cannot outlive the RCU Guar, this guarantees the
+            //   return value will only be used under RCU read lock, and the RCU read lock prevents
+            //   the pass of a grace period that the drop of `RcuOld` or `Rcu` is waiting for,
+            //   therefore no `from_foreign()` will be called for `ptr` as long as `Borrowed` exists.
+            //
+            //      CPU 0                                       CPU 1
+            //      =====                                       =====
+            //      { `x` is a reference to Rcu<Box<i32>> }
+            //      let g = rcu::read_lock();
+            //
+            //      if let Some(b) = x.dereference(&g) {
+            //      // drop(g); cannot be done, since `b` is still alive.
+            //
+            //                                              if let Some(old) = x.replace(...) {
+            //                                                  // `x` is null now.
+            //          println!("{}", b);
+            //      }
+            //                                                  drop(old):
+            //                                                    synchronize_rcu();
+            //      drop(g);
+            //                                                    // a grace period passed.
+            //                                                    // No `Borrowed` exists now.
+            //                                                    from_foreign(...);
+            //                                              }
+            Some(unsafe { P::borrow(ptr) })
+        } else {
+            None
+        }
+    }
+
+    /// Read, copy and update the pointer with new value.
+    ///
+    /// Returns `None` if the pointer's old value is null, otherwise returns `Some(old)`, where old
+    /// is a [`RcuOld`] which can be used to free the old object eventually.
+    ///
+    /// The `Pin<&mut Self>` is needed because this function needs the exclusive access to
+    /// [`Rcu<P>`], otherwise two `read_copy_update()`s may get the same old object and double free.
+    /// Using `Pin<&mut Self>` provides the exclusive access that C side requires with the type
+    /// system checking.
+    ///
+    /// Also this has to be `Pin` because a `&mut Self` may allow users to `swap()` safely, that
+    /// will break the atomicity. A [`Rcu<P>`] should be structurally pinned in the struct that
+    /// contains it.
+    ///
+    /// Note that `Pin<&mut Self>` cannot assume noalias here because [`Atomic<T>`] is a
+    /// [`Opaque<T>`] which has the same effect on aliasing rules as [`UnsafePinned`].
+    ///
+    /// [`UnsafePinned`]: https://rust-lang.github.io/rfcs/3467-unsafe-pinned.html
+    pub fn read_copy_update<F>(self: Pin<&mut Self>, f: F) -> Option<RcuOld<P>>
+    where
+        F: FnOnce(Option<P::Borrowed<'_>>) -> Option<P>,
+    {
+        // step 1: READ.
+        // Ordering: Address dependency pairs with the `store(Release)` in read_copy_update().
+        let old_ptr = NonNull::new(self.0.load(Relaxed));
+
+        let old = old_ptr.map(|nonnull| {
+            // SAFETY: Per type invariants `old_ptr` has to be a value return by a previous
+            // `into_foreign()`, and the exclusive reference `self` guarantees that `from_foreign()`
+            // has not been called.
+            unsafe { P::borrow(nonnull.as_ptr()) }
+        });
+
+        // step 2: COPY, or more generally, initializing `new` based on `old`.
+        let new = f(old);
+
+        // step 3: UPDATE.
+        if let Some(new) = new {
+            let new_ptr = new.into_foreign().cast_mut();
+            // Ordering: Pairs with the address dependency in `dereference()` and
+            // `read_copy_update()`.
+            // INVARIANTS: `new.into_foreign()` is directly store into the atomic variable.
+            self.0.store(new_ptr, Release);
+        } else {
+            // Ordering: Setting to a null pointer doesn't need to be Release.
+            // INVARIANTS: The atomic variable is set to be null.
+            self.0.store(core::ptr::null_mut(), Relaxed);
+        }
+
+        // INVARIANTS: The exclusive reference guarantess that the ownership of a previous
+        // `into_foreign()` transferred to the `RcuOld`.
+        Some(RcuOld(old_ptr?, PhantomData))
+    }
+
+    /// Replaces the pointer with new value.
+    ///
+    /// Returns `None` if the pointer's old value is null, otherwise returns `Some(old)`, where old
+    /// is a [`RcuOld`] which can be used to free the old object eventually.
+    ///
+    /// # Examples
+    ///
+    /// ```rust
+    /// use core::pin::pin;
+    /// # use kernel::alloc::{flags, KBox};
+    /// use kernel::sync::rcu::{self, Rcu};
+    ///
+    /// let mut x = pin!(Rcu::new(KBox::new(100i32, flags::GFP_KERNEL)?));
+    /// let q = KBox::new(101i32, flags::GFP_KERNEL)?;
+    ///
+    /// // Read in under RCU read lock protection.
+    /// let g = rcu::read_lock();
+    /// let v = x.dereference(&g);
+    ///
+    /// // Replace with a new object.
+    /// let old = x.as_mut().replace(q);
+    ///
+    /// assert!(old.is_some());
+    ///
+    /// // `v` should still read the old value.
+    /// assert_eq!(v, Some(&100i32));
+    ///
+    /// // New readers should get the new value.
+    /// assert_eq!(x.dereference(&g), Some(&101i32));
+    ///
+    /// drop(g);
+    ///
+    /// // Can free the object outside the read-side critical section.
+    /// drop(old);
+    /// # Ok::<(), Error>(())
+    /// ```
+    pub fn replace(self: Pin<&mut Self>, new: P) -> Option<RcuOld<P>> {
+        self.read_copy_update(|_| Some(new))
+    }
+}
+
+impl<P: ForeignOwnable> Drop for Rcu<P> {
+    fn drop(&mut self) {
+        let ptr = *self.0.get_mut();
+        if !ptr.is_null() {
+            // SAFETY: As long as called in a sleepable context, which should be checked by klint,
+            // `synchronize_rcu()` is safe to call.
+            unsafe {
+                bindings::synchronize_rcu();
+            }
+
+            // SAFETY: `self.0` is a return value of `P::into_foreign()`, so it's safe to call
+            // `from_foreign()` on it. Plus, the above `synchronize_rcu()` guarantees no existing
+            // `ForeignOwnable::borrow()` anymore.
+            drop(unsafe { P::from_foreign(ptr) });
+        }
+    }
+}
-- 
2.45.2