Add two phases to mmu_stress_test to verify that KVM correctly handles
guest memory that was writable, and then made read-only in the primary MMU,
and then made writable again.
Add bonus coverage for x86 and arm64 to verify that all of guest memory was
marked read-only. Making forward progress (without making memory writable)
requires arch specific code to skip over the faulting instruction, but the
test can at least verify each vCPU's starting page was made read-only for
other architectures.
Signed-off-by: Sean Christopherson <seanjc@google.com>
---
tools/testing/selftests/kvm/mmu_stress_test.c | 104 +++++++++++++++++-
1 file changed, 101 insertions(+), 3 deletions(-)
diff --git a/tools/testing/selftests/kvm/mmu_stress_test.c b/tools/testing/selftests/kvm/mmu_stress_test.c
index 0918fade9267..d9c76b4c0d88 100644
--- a/tools/testing/selftests/kvm/mmu_stress_test.c
+++ b/tools/testing/selftests/kvm/mmu_stress_test.c
@@ -17,6 +17,8 @@
#include "processor.h"
#include "ucall_common.h"
+static bool mprotect_ro_done;
+
static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride)
{
uint64_t gpa;
@@ -32,6 +34,42 @@ static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride)
*((volatile uint64_t *)gpa);
GUEST_SYNC(2);
+ /*
+ * Write to the region while mprotect(PROT_READ) is underway. Keep
+ * looping until the memory is guaranteed to be read-only, otherwise
+ * vCPUs may complete their writes and advance to the next stage
+ * prematurely.
+ *
+ * For architectures that support skipping the faulting instruction,
+ * generate the store via inline assembly to ensure the exact length
+ * of the instruction is known and stable (vcpu_arch_put_guest() on
+ * fixed-length architectures should work, but the cost of paranoia
+ * is low in this case). For x86, hand-code the exact opcode so that
+ * there is no room for variability in the generated instruction.
+ */
+ do {
+ for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
+#ifdef __x86_64__
+ asm volatile(".byte 0x48,0x89,0x00" :: "a"(gpa) : "memory"); /* mov %rax, (%rax) */
+#elif defined(__aarch64__)
+ asm volatile("str %0, [%0]" :: "r" (gpa) : "memory");
+#else
+ vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa);
+#endif
+ } while (!READ_ONCE(mprotect_ro_done));
+
+ /*
+ * Only architectures that write the entire range can explicitly sync,
+ * as other architectures will be stuck on the write fault.
+ */
+#if defined(__x86_64__) || defined(__aarch64__)
+ GUEST_SYNC(3);
+#endif
+
+ for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
+ vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa);
+ GUEST_SYNC(4);
+
GUEST_ASSERT(0);
}
@@ -79,6 +117,7 @@ static void *vcpu_worker(void *data)
struct vcpu_info *info = data;
struct kvm_vcpu *vcpu = info->vcpu;
struct kvm_vm *vm = vcpu->vm;
+ int r;
vcpu_args_set(vcpu, 3, info->start_gpa, info->end_gpa, vm->page_size);
@@ -101,6 +140,57 @@ static void *vcpu_worker(void *data)
/* Stage 2, read all of guest memory, which is now read-only. */
run_vcpu(vcpu, 2);
+
+ /*
+ * Stage 3, write guest memory and verify KVM returns -EFAULT for once
+ * the mprotect(PROT_READ) lands. Only architectures that support
+ * validating *all* of guest memory sync for this stage, as vCPUs will
+ * be stuck on the faulting instruction for other architectures. Go to
+ * stage 3 without a rendezvous
+ */
+ do {
+ r = _vcpu_run(vcpu);
+ } while (!r);
+ TEST_ASSERT(r == -1 && errno == EFAULT,
+ "Expected EFAULT on write to RO memory, got r = %d, errno = %d", r, errno);
+
+#if defined(__x86_64__) || defined(__aarch64__)
+ /*
+ * Verify *all* writes from the guest hit EFAULT due to the VMA now
+ * being read-only. x86 and arm64 only at this time as skipping the
+ * instruction that hits the EFAULT requires advancing the program
+ * counter, which is arch specific and relies on inline assembly.
+ */
+#ifdef __x86_64__
+ vcpu->run->kvm_valid_regs = KVM_SYNC_X86_REGS;
+#endif
+ for (;;) {
+ r = _vcpu_run(vcpu);
+ if (!r)
+ break;
+ TEST_ASSERT_EQ(errno, EFAULT);
+#if defined(__x86_64__)
+ WRITE_ONCE(vcpu->run->kvm_dirty_regs, KVM_SYNC_X86_REGS);
+ vcpu->run->s.regs.regs.rip += 3;
+#elif defined(__aarch64__)
+ vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc),
+ vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc)) + 4);
+#endif
+
+ }
+ assert_sync_stage(vcpu, 3);
+#endif /* __x86_64__ || __aarch64__ */
+ rendezvous_with_boss();
+
+ /*
+ * Stage 4. Run to completion, waiting for mprotect(PROT_WRITE) to
+ * make the memory writable again.
+ */
+ do {
+ r = _vcpu_run(vcpu);
+ } while (r && errno == EFAULT);
+ TEST_ASSERT_EQ(r, 0);
+ assert_sync_stage(vcpu, 4);
rendezvous_with_boss();
return NULL;
@@ -183,7 +273,7 @@ int main(int argc, char *argv[])
const uint64_t start_gpa = SZ_4G;
const int first_slot = 1;
- struct timespec time_start, time_run1, time_reset, time_run2, time_ro;
+ struct timespec time_start, time_run1, time_reset, time_run2, time_ro, time_rw;
uint64_t max_gpa, gpa, slot_size, max_mem, i;
int max_slots, slot, opt, fd;
bool hugepages = false;
@@ -288,19 +378,27 @@ int main(int argc, char *argv[])
rendezvous_with_vcpus(&time_run2, "run 2");
mprotect(mem, slot_size, PROT_READ);
+ usleep(10);
+ mprotect_ro_done = true;
+ sync_global_to_guest(vm, mprotect_ro_done);
+
rendezvous_with_vcpus(&time_ro, "mprotect RO");
+ mprotect(mem, slot_size, PROT_READ | PROT_WRITE);
+ rendezvous_with_vcpus(&time_rw, "mprotect RW");
+ time_rw = timespec_sub(time_rw, time_ro);
time_ro = timespec_sub(time_ro, time_run2);
time_run2 = timespec_sub(time_run2, time_reset);
time_reset = timespec_sub(time_reset, time_run1);
time_run1 = timespec_sub(time_run1, time_start);
pr_info("run1 = %ld.%.9lds, reset = %ld.%.9lds, run2 = %ld.%.9lds, "
- "ro = %ld.%.9lds\n",
+ "ro = %ld.%.9lds, rw = %ld.%.9lds\n",
time_run1.tv_sec, time_run1.tv_nsec,
time_reset.tv_sec, time_reset.tv_nsec,
time_run2.tv_sec, time_run2.tv_nsec,
- time_ro.tv_sec, time_ro.tv_nsec);
+ time_ro.tv_sec, time_ro.tv_nsec,
+ time_rw.tv_sec, time_rw.tv_nsec);
/*
* Delete even numbered slots (arbitrary) and unmap the first half of
--
2.47.0.rc0.187.ge670bccf7e-goog