[PATCH v8 16/29] rust: alloc: implement kernel `Vec` type

Danilo Krummrich posted 29 patches 1 month, 3 weeks ago
There is a newer version of this series
[PATCH v8 16/29] rust: alloc: implement kernel `Vec` type
Posted by Danilo Krummrich 1 month, 3 weeks ago
`Vec` provides a contiguous growable array type with contents allocated
with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`).

In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers
the kernel's GFP flags for all appropriate functions, always reports
allocation failures through `Result<_, AllocError>` and remains
independent from unstable features.

Signed-off-by: Danilo Krummrich <dakr@kernel.org>
---
 rust/kernel/alloc.rs      |   6 +
 rust/kernel/alloc/kvec.rs | 637 ++++++++++++++++++++++++++++++++++++++
 rust/kernel/prelude.rs    |   2 +-
 3 files changed, 644 insertions(+), 1 deletion(-)
 create mode 100644 rust/kernel/alloc/kvec.rs

diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
index bf143a71d53d..961070daf6db 100644
--- a/rust/kernel/alloc.rs
+++ b/rust/kernel/alloc.rs
@@ -5,6 +5,7 @@
 #[cfg(not(any(test, testlib)))]
 pub mod allocator;
 pub mod kbox;
+pub mod kvec;
 pub mod layout;
 pub mod vec_ext;
 
@@ -19,6 +20,11 @@
 pub use self::kbox::KVBox;
 pub use self::kbox::VBox;
 
+pub use self::kvec::KVVec;
+pub use self::kvec::KVec;
+pub use self::kvec::VVec;
+pub use self::kvec::Vec;
+
 /// Indicates an allocation error.
 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
 pub struct AllocError;
diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
new file mode 100644
index 000000000000..44aade0a653b
--- /dev/null
+++ b/rust/kernel/alloc/kvec.rs
@@ -0,0 +1,637 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Implementation of [`Vec`].
+
+use super::{
+    allocator::{KVmalloc, Kmalloc, Vmalloc},
+    layout::ArrayLayout,
+    AllocError, Allocator, Box, Flags,
+};
+use core::{
+    fmt,
+    marker::PhantomData,
+    mem::{ManuallyDrop, MaybeUninit},
+    ops::Deref,
+    ops::DerefMut,
+    ops::Index,
+    ops::IndexMut,
+    ptr,
+    ptr::NonNull,
+    slice,
+    slice::SliceIndex,
+};
+
+/// Create a [`KVec`] containing the arguments.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = kernel::kvec![];
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(v, [1]);
+///
+/// let mut v = kernel::kvec![1; 3]?;
+/// v.push(4, GFP_KERNEL)?;
+/// assert_eq!(v, [1, 1, 1, 4]);
+///
+/// let mut v = kernel::kvec![1, 2, 3]?;
+/// v.push(4, GFP_KERNEL)?;
+/// assert_eq!(v, [1, 2, 3, 4]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+#[macro_export]
+macro_rules! kvec {
+    () => (
+        $crate::alloc::KVec::new()
+    );
+    ($elem:expr; $n:expr) => (
+        $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
+    );
+    ($($x:expr),+ $(,)?) => (
+        match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
+            Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
+            Err(e) => Err(e),
+        }
+    );
+}
+
+/// The kernel's [`Vec`] type.
+///
+/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
+/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
+///
+/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
+/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
+///
+/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
+///
+/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
+/// capacity of the vector (the number of elements that currently fit into the vector), it's length
+/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
+/// to allocate (and free) the backing buffer.
+///
+/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
+/// and manually modified.
+///
+/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
+/// are added to the vector.
+///
+/// # Invariants
+///
+/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
+///   zero-sized types, is a dangling, well aligned pointer.
+///
+/// - `self.len` always represents the exact number of elements stored in the vector.
+///
+/// - `self.layout` represents the absolute number of elements that can be stored within the vector
+///   without re-allocation. However, it is legal for the backing buffer to be larger than `layout`.
+///
+/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
+///   was allocated with (and must be freed with).
+pub struct Vec<T, A: Allocator> {
+    ptr: NonNull<T>,
+    /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
+    ///
+    /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
+    /// elements we can still store without reallocating.
+    layout: ArrayLayout<T>,
+    len: usize,
+    _p: PhantomData<A>,
+}
+
+/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = KVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type KVec<T> = Vec<T, Kmalloc>;
+
+/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = VVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type VVec<T> = Vec<T, Vmalloc>;
+
+/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = KVVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type KVVec<T> = Vec<T, KVmalloc>;
+
+// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
+unsafe impl<T, A> Send for Vec<T, A>
+where
+    T: Send,
+    A: Allocator,
+{
+}
+
+// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
+unsafe impl<T, A> Sync for Vec<T, A>
+where
+    T: Sync,
+    A: Allocator,
+{
+}
+
+impl<T, A> Vec<T, A>
+where
+    A: Allocator,
+{
+    #[inline]
+    const fn is_zst() -> bool {
+        core::mem::size_of::<T>() == 0
+    }
+
+    /// Returns the number of elements that can be stored within the vector without allocating
+    /// additional memory.
+    pub fn capacity(&self) -> usize {
+        if const { Self::is_zst() } {
+            usize::MAX
+        } else {
+            self.layout.len()
+        }
+    }
+
+    /// Returns the number of elements stored within the vector.
+    #[inline]
+    pub fn len(&self) -> usize {
+        self.len
+    }
+
+    /// Forcefully sets `self.len` to `new_len`.
+    ///
+    /// # Safety
+    ///
+    /// - `new_len` must be less than or equal to [`Self::capacity`].
+    /// - If `new_len` is greater than `self.len`, all elements within the interval
+    ///   [`self.len`,`new_len`) must be initialized.
+    #[inline]
+    pub unsafe fn set_len(&mut self, new_len: usize) {
+        debug_assert!(new_len <= self.capacity());
+        self.len = new_len;
+    }
+
+    /// Returns a slice of the entire vector.
+    #[inline]
+    pub fn as_slice(&self) -> &[T] {
+        self
+    }
+
+    /// Returns a mutable slice of the entire vector.
+    #[inline]
+    pub fn as_mut_slice(&mut self) -> &mut [T] {
+        self
+    }
+
+    /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
+    /// dangling raw pointer.
+    #[inline]
+    pub fn as_mut_ptr(&mut self) -> *mut T {
+        self.ptr.as_ptr()
+    }
+
+    /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
+    /// pointer.
+    #[inline]
+    pub fn as_ptr(&self) -> *const T {
+        self.ptr.as_ptr()
+    }
+
+    /// Returns `true` if the vector contains no elements, `false` otherwise.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = KVec::new();
+    /// assert!(v.is_empty());
+    ///
+    /// v.push(1, GFP_KERNEL);
+    /// assert!(!v.is_empty());
+    /// ```
+    #[inline]
+    pub fn is_empty(&self) -> bool {
+        self.len() == 0
+    }
+
+    /// Creates a new, empty Vec<T, A>.
+    ///
+    /// This method does not allocate by itself.
+    #[inline]
+    pub const fn new() -> Self {
+        Self {
+            ptr: NonNull::dangling(),
+            layout: ArrayLayout::empty(),
+            len: 0,
+            _p: PhantomData::<A>,
+        }
+    }
+
+    /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
+    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
+        // SAFETY:
+        // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
+        //   guaranteed to be part of the same allocated object.
+        // - `self.len` can not overflow `isize`.
+        let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;
+
+        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
+        // and valid, but uninitialized.
+        unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
+    }
+
+    /// Appends an element to the back of the [`Vec`] instance.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = KVec::new();
+    /// v.push(1, GFP_KERNEL)?;
+    /// assert_eq!(&v, &[1]);
+    ///
+    /// v.push(2, GFP_KERNEL)?;
+    /// assert_eq!(&v, &[1, 2]);
+    /// # Ok::<(), Error>(())
+    /// ```
+    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
+        self.reserve(1, flags)?;
+
+        // SAFETY:
+        // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
+        //   guaranteed to be part of the same allocated object.
+        // - `self.len` can not overflow `isize`.
+        let ptr = unsafe { self.as_mut_ptr().add(self.len) };
+
+        // SAFETY:
+        // - `ptr` is properly aligned and valid for writes.
+        unsafe { core::ptr::write(ptr, v) };
+
+        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
+        // by 1. We also know that the new length is <= capacity because of the previous call to
+        // `reserve` above.
+        unsafe { self.set_len(self.len() + 1) };
+        Ok(())
+    }
+
+    /// Creates a new [`Vec`] instance with at least the given capacity.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
+    ///
+    /// assert!(v.capacity() >= 20);
+    /// # Ok::<(), Error>(())
+    /// ```
+    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
+        let mut v = Vec::new();
+
+        v.reserve(capacity, flags)?;
+
+        Ok(v)
+    }
+
+    /// Creates a Vec<T, A> from a pointer, a length and a capacity using the allocator `A`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = kernel::kvec![1, 2, 3]?;
+    /// v.reserve(1, GFP_KERNEL)?;
+    ///
+    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
+    ///
+    /// // SAFETY: We've just reserved memory for another element.
+    /// unsafe { ptr.add(len).write(4) };
+    /// len += 1;
+    ///
+    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
+    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
+    /// // from the exact same raw parts.
+    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
+    ///
+    /// assert_eq!(v, [1, 2, 3, 4]);
+    ///
+    /// # Ok::<(), Error>(())
+    /// ```
+    ///
+    /// # Safety
+    ///
+    /// If `T` is a ZST:
+    ///
+    /// - `ptr` must be a dangling, well aligned pointer.
+    ///
+    /// Otherwise:
+    ///
+    /// - `ptr` must have been allocated with the allocator `A`.
+    /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
+    /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity`.
+    ///    bytes.
+    /// - The allocated size in bytes must not be larger than `isize::MAX`.
+    /// - `length` must be less than or equal to `capacity`.
+    /// - The first `length` elements must be initialized values of type `T`.
+    ///
+    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
+    /// `cap` and `len`.
+    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
+        let layout = if Self::is_zst() {
+            ArrayLayout::empty()
+        } else {
+            // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
+            // smaller than `isize::MAX`.
+            unsafe { ArrayLayout::new_unchecked(capacity) }
+        };
+
+        Self {
+            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
+            // memory allocation, allocated with `A`.
+            ptr: unsafe { NonNull::new_unchecked(ptr) },
+            layout,
+            len: length,
+            _p: PhantomData::<A>,
+        }
+    }
+
+    /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
+    ///
+    /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
+    /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
+    /// elements and free the allocation, if any.
+    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
+        let mut me = ManuallyDrop::new(self);
+        let len = me.len();
+        let capacity = me.capacity();
+        let ptr = me.as_mut_ptr();
+        (ptr, len, capacity)
+    }
+
+    /// Ensures that the capacity exceeds the length by at least `additional`
+    /// elements.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = KVec::new();
+    /// v.push(1, GFP_KERNEL)?;
+    ///
+    /// v.reserve(10, GFP_KERNEL)?;
+    /// let cap = v.capacity();
+    /// assert!(cap >= 10);
+    ///
+    /// v.reserve(10, GFP_KERNEL)?;
+    /// let new_cap = v.capacity();
+    /// assert_eq!(new_cap, cap);
+    ///
+    /// # Ok::<(), Error>(())
+    /// ```
+    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
+        let len = self.len();
+        let cap = self.capacity();
+
+        if cap - len >= additional {
+            return Ok(());
+        }
+
+        if Self::is_zst() {
+            // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
+            return Err(AllocError);
+        }
+
+        // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
+        // multiplication by two won't overflow.
+        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
+        let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
+
+        // SAFETY:
+        // - `ptr` is valid because it's either `None` or comes from a previous call to
+        //   `A::realloc`.
+        // - `self.layout` matches the `ArrayLayout` of the preceeding allocation.
+        let ptr = unsafe {
+            A::realloc(
+                Some(self.ptr.cast()),
+                layout.into(),
+                self.layout.into(),
+                flags,
+            )?
+        };
+
+        self.ptr = ptr.cast();
+        self.layout = layout;
+
+        Ok(())
+    }
+}
+
+impl<T: Clone, A: Allocator> Vec<T, A> {
+    /// Extend the vector by `n` clones of `value`.
+    pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
+        if n == 0 {
+            return Ok(());
+        }
+
+        self.reserve(n, flags)?;
+
+        let spare = self.spare_capacity_mut();
+
+        for item in spare.iter_mut().take(n - 1) {
+            item.write(value.clone());
+        }
+
+        // We can write the last element directly without cloning needlessly.
+        spare[n - 1].write(value);
+
+        // SAFETY:
+        // - `self.len() + n < self.capacity()` due to the call to reserve above,
+        // - the loop and the line above initialized the next `n` elements.
+        unsafe { self.set_len(self.len() + n) };
+
+        Ok(())
+    }
+
+    /// Pushes clones of the elements of slice into the [`Vec`] instance.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = KVec::new();
+    /// v.push(1, GFP_KERNEL)?;
+    ///
+    /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
+    /// assert_eq!(&v, &[1, 20, 30, 40]);
+    ///
+    /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
+    /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
+    /// # Ok::<(), Error>(())
+    /// ```
+    pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
+        self.reserve(other.len(), flags)?;
+        for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
+            slot.write(item.clone());
+        }
+
+        // SAFETY:
+        // - `other.len()` spare entries have just been initialized, so it is safe to increase
+        //   the length by the same number.
+        // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
+        //   call.
+        unsafe { self.set_len(self.len() + other.len()) };
+        Ok(())
+    }
+
+    /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
+    pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
+        let mut v = Self::with_capacity(n, flags)?;
+
+        v.extend_with(n, value, flags)?;
+
+        Ok(v)
+    }
+}
+
+impl<T, A> Drop for Vec<T, A>
+where
+    A: Allocator,
+{
+    fn drop(&mut self) {
+        // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
+        unsafe {
+            ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
+                self.as_mut_ptr(),
+                self.len,
+            ))
+        };
+
+        // SAFETY:
+        // - `self.ptr` was previously allocated with `A`.
+        // - `self.layout` matches the `ArrayLayout` of the preceeding allocation.
+        unsafe { A::free(self.ptr.cast(), self.layout.into()) };
+    }
+}
+
+impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
+where
+    A: Allocator,
+{
+    fn from(b: Box<[T; N], A>) -> Vec<T, A> {
+        let len = b.len();
+        let ptr = Box::into_raw(b);
+
+        // SAFETY:
+        // - `b` has been allocated with `A`,
+        // - `ptr` fulfills the alignment requirements for `T`,
+        // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
+        // - all elements within `b` are initialized values of `T`,
+        // - `len` does not exceed `isize::MAX`.
+        unsafe { Vec::from_raw_parts(ptr as _, len, len) }
+    }
+}
+
+impl<T> Default for KVec<T> {
+    #[inline]
+    fn default() -> Self {
+        Self::new()
+    }
+}
+
+impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        fmt::Debug::fmt(&**self, f)
+    }
+}
+
+impl<T, A> Deref for Vec<T, A>
+where
+    A: Allocator,
+{
+    type Target = [T];
+
+    #[inline]
+    fn deref(&self) -> &[T] {
+        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
+        // initialized elements of type `T`.
+        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
+    }
+}
+
+impl<T, A> DerefMut for Vec<T, A>
+where
+    A: Allocator,
+{
+    #[inline]
+    fn deref_mut(&mut self) -> &mut [T] {
+        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
+        // initialized elements of type `T`.
+        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
+    }
+}
+
+impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
+
+impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
+where
+    A: Allocator,
+{
+    type Output = I::Output;
+
+    #[inline]
+    fn index(&self, index: I) -> &Self::Output {
+        Index::index(&**self, index)
+    }
+}
+
+impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
+where
+    A: Allocator,
+{
+    #[inline]
+    fn index_mut(&mut self, index: I) -> &mut Self::Output {
+        IndexMut::index_mut(&mut **self, index)
+    }
+}
+
+macro_rules! impl_slice_eq {
+    ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
+        $(
+            impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
+            where
+                T: PartialEq<U>,
+            {
+                #[inline]
+                fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
+            }
+        )*
+    }
+}
+
+impl_slice_eq! {
+    [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
+    [A: Allocator] Vec<T, A>, &[U],
+    [A: Allocator] Vec<T, A>, &mut [U],
+    [A: Allocator] &[T], Vec<U, A>,
+    [A: Allocator] &mut [T], Vec<U, A>,
+    [A: Allocator] Vec<T, A>, [U],
+    [A: Allocator] [T], Vec<U, A>,
+    [A: Allocator, const N: usize] Vec<T, A>, [U; N],
+    [A: Allocator, const N: usize] Vec<T, A>, &[U; N],
+}
diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
index d5f2fe42d093..80223cdaa485 100644
--- a/rust/kernel/prelude.rs
+++ b/rust/kernel/prelude.rs
@@ -14,7 +14,7 @@
 #[doc(no_inline)]
 pub use core::pin::Pin;
 
-pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox};
+pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec};
 
 #[doc(no_inline)]
 pub use alloc::vec::Vec;
-- 
2.46.1
Re: [PATCH v8 16/29] rust: alloc: implement kernel `Vec` type
Posted by Benno Lossin 1 month, 3 weeks ago
On 01.10.24 16:59, Danilo Krummrich wrote:
> `Vec` provides a contiguous growable array type with contents allocated
> with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`).
> 
> In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers
> the kernel's GFP flags for all appropriate functions, always reports
> allocation failures through `Result<_, AllocError>` and remains
> independent from unstable features.
> 
> Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> ---
>  rust/kernel/alloc.rs      |   6 +
>  rust/kernel/alloc/kvec.rs | 637 ++++++++++++++++++++++++++++++++++++++

Any reason against naming this `vec.rs`?

>  rust/kernel/prelude.rs    |   2 +-
>  3 files changed, 644 insertions(+), 1 deletion(-)
>  create mode 100644 rust/kernel/alloc/kvec.rs

I share Gary's opinion, let's do future improvements via
good-first-issues/patches in the current cycle. But get this version
merged now.

Reviewed-by: Benno Lossin <benno.lossin@proton.me>

---
Cheers,
Benno
Re: [PATCH v8 16/29] rust: alloc: implement kernel `Vec` type
Posted by Danilo Krummrich 1 month, 3 weeks ago
On Wed, Oct 02, 2024 at 03:02:18PM +0000, Benno Lossin wrote:
> On 01.10.24 16:59, Danilo Krummrich wrote:
> > `Vec` provides a contiguous growable array type with contents allocated
> > with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`).
> > 
> > In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers
> > the kernel's GFP flags for all appropriate functions, always reports
> > allocation failures through `Result<_, AllocError>` and remains
> > independent from unstable features.
> > 
> > Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> > ---
> >  rust/kernel/alloc.rs      |   6 +
> >  rust/kernel/alloc/kvec.rs | 637 ++++++++++++++++++++++++++++++++++++++
> 
> Any reason against naming this `vec.rs`?

I think I didn't rename kvec.rs and kbox.rs because we'd need to escape "box" in
various places, e.g. in rust/kernel/alloc.rs:

```
pub mod r#box;

pub use self::r#box::Box;
pub use self::r#box::KBox;
pub use self::r#box::VBox;
pub use self::r#box::KVBox;
```

And it's a kernel specific implementation, so kbox.rs and kvec.rs still makes
sense. :)

> 
> >  rust/kernel/prelude.rs    |   2 +-
> >  3 files changed, 644 insertions(+), 1 deletion(-)
> >  create mode 100644 rust/kernel/alloc/kvec.rs
> 
> I share Gary's opinion, let's do future improvements via
> good-first-issues/patches in the current cycle. But get this version
> merged now.
> 
> Reviewed-by: Benno Lossin <benno.lossin@proton.me>
> 
> ---
> Cheers,
> Benno
>
Re: [PATCH v8 16/29] rust: alloc: implement kernel `Vec` type
Posted by Benno Lossin 1 month, 3 weeks ago
On 02.10.24 17:20, Danilo Krummrich wrote:
> On Wed, Oct 02, 2024 at 03:02:18PM +0000, Benno Lossin wrote:
>> On 01.10.24 16:59, Danilo Krummrich wrote:
>>> `Vec` provides a contiguous growable array type with contents allocated
>>> with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`).
>>>
>>> In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers
>>> the kernel's GFP flags for all appropriate functions, always reports
>>> allocation failures through `Result<_, AllocError>` and remains
>>> independent from unstable features.
>>>
>>> Signed-off-by: Danilo Krummrich <dakr@kernel.org>
>>> ---
>>>  rust/kernel/alloc.rs      |   6 +
>>>  rust/kernel/alloc/kvec.rs | 637 ++++++++++++++++++++++++++++++++++++++
>>
>> Any reason against naming this `vec.rs`?
> 
> I think I didn't rename kvec.rs and kbox.rs because we'd need to escape "box" in
> various places, e.g. in rust/kernel/alloc.rs:
> 
> ```
> pub mod r#box;
> 
> pub use self::r#box::Box;
> pub use self::r#box::KBox;
> pub use self::r#box::VBox;
> pub use self::r#box::KVBox;
> ```

Yeah, that's why `std` uses `boxed.rs`.

> And it's a kernel specific implementation, so kbox.rs and kvec.rs still makes
> sense. :)

Fair.

---
Cheers,
Benno
Re: [PATCH v8 16/29] rust: alloc: implement kernel `Vec` type
Posted by Gary Guo 1 month, 3 weeks ago
On Tue,  1 Oct 2024 16:59:51 +0200
Danilo Krummrich <dakr@kernel.org> wrote:

> `Vec` provides a contiguous growable array type with contents allocated
> with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`).
> 
> In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers
> the kernel's GFP flags for all appropriate functions, always reports
> allocation failures through `Result<_, AllocError>` and remains
> independent from unstable features.
> 
> Signed-off-by: Danilo Krummrich <dakr@kernel.org>

Thanks a lot for your work. I think this is much cleaner with the ZST
handling offloaded to `Allocator` and overload checking offloaded to
`ArrayLayout`.

Some nits below, although I think we should apply this and then address
the nits with follow up patches (some may also be good first issues).

Therefore:

Reviewed-by: Gary Guo <gary@garyguo.net>

Best,
Gary

> ---
>  rust/kernel/alloc.rs      |   6 +
>  rust/kernel/alloc/kvec.rs | 637 ++++++++++++++++++++++++++++++++++++++
>  rust/kernel/prelude.rs    |   2 +-
>  3 files changed, 644 insertions(+), 1 deletion(-)
>  create mode 100644 rust/kernel/alloc/kvec.rs
> 
> diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> index bf143a71d53d..961070daf6db 100644
> --- a/rust/kernel/alloc.rs
> +++ b/rust/kernel/alloc.rs
> @@ -5,6 +5,7 @@
>  #[cfg(not(any(test, testlib)))]
>  pub mod allocator;
>  pub mod kbox;
> +pub mod kvec;
>  pub mod layout;
>  pub mod vec_ext;
>  
> @@ -19,6 +20,11 @@
>  pub use self::kbox::KVBox;
>  pub use self::kbox::VBox;
>  
> +pub use self::kvec::KVVec;
> +pub use self::kvec::KVec;
> +pub use self::kvec::VVec;
> +pub use self::kvec::Vec;
> +
>  /// Indicates an allocation error.
>  #[derive(Copy, Clone, PartialEq, Eq, Debug)]
>  pub struct AllocError;
> diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> new file mode 100644
> index 000000000000..44aade0a653b
> --- /dev/null
> +++ b/rust/kernel/alloc/kvec.rs
> @@ -0,0 +1,637 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +//! Implementation of [`Vec`].
> +
> +use super::{
> +    allocator::{KVmalloc, Kmalloc, Vmalloc},
> +    layout::ArrayLayout,
> +    AllocError, Allocator, Box, Flags,
> +};
> +use core::{
> +    fmt,
> +    marker::PhantomData,
> +    mem::{ManuallyDrop, MaybeUninit},
> +    ops::Deref,
> +    ops::DerefMut,
> +    ops::Index,
> +    ops::IndexMut,
> +    ptr,
> +    ptr::NonNull,
> +    slice,
> +    slice::SliceIndex,
> +};
> +
> +/// Create a [`KVec`] containing the arguments.

This should mention that it allocates using `GFP_KERNEL`.

> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = kernel::kvec![];
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(v, [1]);
> +///
> +/// let mut v = kernel::kvec![1; 3]?;
> +/// v.push(4, GFP_KERNEL)?;
> +/// assert_eq!(v, [1, 1, 1, 4]);
> +///
> +/// let mut v = kernel::kvec![1, 2, 3]?;
> +/// v.push(4, GFP_KERNEL)?;
> +/// assert_eq!(v, [1, 2, 3, 4]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +#[macro_export]
> +macro_rules! kvec {
> +    () => (
> +        $crate::alloc::KVec::new()
> +    );
> +    ($elem:expr; $n:expr) => (
> +        $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
> +    );
> +    ($($x:expr),+ $(,)?) => (
> +        match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
> +            Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
> +            Err(e) => Err(e),
> +        }
> +    );
> +}
> +
> +/// The kernel's [`Vec`] type.
> +///
> +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
> +/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
> +///
> +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
> +/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
> +///
> +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
> +///
> +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
> +/// capacity of the vector (the number of elements that currently fit into the vector), it's length
> +/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
> +/// to allocate (and free) the backing buffer.
> +///
> +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
> +/// and manually modified.
> +///
> +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
> +/// are added to the vector.
> +///
> +/// # Invariants
> +///
> +/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
> +///   zero-sized types, is a dangling, well aligned pointer.
> +///
> +/// - `self.len` always represents the exact number of elements stored in the vector.
> +///
> +/// - `self.layout` represents the absolute number of elements that can be stored within the vector
> +///   without re-allocation. However, it is legal for the backing buffer to be larger than `layout`.
> +///
> +/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
> +///   was allocated with (and must be freed with).
> +pub struct Vec<T, A: Allocator> {
> +    ptr: NonNull<T>,
> +    /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
> +    ///
> +    /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
> +    /// elements we can still store without reallocating.
> +    layout: ArrayLayout<T>,
> +    len: usize,
> +    _p: PhantomData<A>,
> +}
> +
> +/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = KVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type KVec<T> = Vec<T, Kmalloc>;
> +
> +/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = VVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type VVec<T> = Vec<T, Vmalloc>;
> +
> +/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = KVVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type KVVec<T> = Vec<T, KVmalloc>;
> +
> +// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
> +unsafe impl<T, A> Send for Vec<T, A>
> +where
> +    T: Send,
> +    A: Allocator,
> +{
> +}
> +
> +// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
> +unsafe impl<T, A> Sync for Vec<T, A>
> +where
> +    T: Sync,
> +    A: Allocator,
> +{
> +}
> +
> +impl<T, A> Vec<T, A>
> +where
> +    A: Allocator,
> +{
> +    #[inline]
> +    const fn is_zst() -> bool {
> +        core::mem::size_of::<T>() == 0
> +    }
> +
> +    /// Returns the number of elements that can be stored within the vector without allocating
> +    /// additional memory.
> +    pub fn capacity(&self) -> usize {
> +        if const { Self::is_zst() } {
> +            usize::MAX
> +        } else {
> +            self.layout.len()
> +        }
> +    }
> +
> +    /// Returns the number of elements stored within the vector.
> +    #[inline]
> +    pub fn len(&self) -> usize {
> +        self.len
> +    }
> +
> +    /// Forcefully sets `self.len` to `new_len`.
> +    ///
> +    /// # Safety
> +    ///
> +    /// - `new_len` must be less than or equal to [`Self::capacity`].
> +    /// - If `new_len` is greater than `self.len`, all elements within the interval
> +    ///   [`self.len`,`new_len`) must be initialized.
> +    #[inline]
> +    pub unsafe fn set_len(&mut self, new_len: usize) {
> +        debug_assert!(new_len <= self.capacity());
> +        self.len = new_len;
> +    }
> +
> +    /// Returns a slice of the entire vector.
> +    #[inline]
> +    pub fn as_slice(&self) -> &[T] {
> +        self
> +    }
> +
> +    /// Returns a mutable slice of the entire vector.
> +    #[inline]
> +    pub fn as_mut_slice(&mut self) -> &mut [T] {
> +        self
> +    }
> +
> +    /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
> +    /// dangling raw pointer.
> +    #[inline]
> +    pub fn as_mut_ptr(&mut self) -> *mut T {
> +        self.ptr.as_ptr()
> +    }
> +
> +    /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
> +    /// pointer.
> +    #[inline]
> +    pub fn as_ptr(&self) -> *const T {
> +        self.ptr.as_ptr()
> +    }
> +
> +    /// Returns `true` if the vector contains no elements, `false` otherwise.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = KVec::new();
> +    /// assert!(v.is_empty());
> +    ///
> +    /// v.push(1, GFP_KERNEL);
> +    /// assert!(!v.is_empty());
> +    /// ```
> +    #[inline]
> +    pub fn is_empty(&self) -> bool {
> +        self.len() == 0
> +    }
> +
> +    /// Creates a new, empty Vec<T, A>.
> +    ///
> +    /// This method does not allocate by itself.
> +    #[inline]
> +    pub const fn new() -> Self {

Missing // INVARIANT here.

> +        Self {
> +            ptr: NonNull::dangling(),
> +            layout: ArrayLayout::empty(),
> +            len: 0,
> +            _p: PhantomData::<A>,
> +        }
> +    }
> +
> +    /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
> +    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
> +        // SAFETY:
> +        // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
> +        //   guaranteed to be part of the same allocated object.
> +        // - `self.len` can not overflow `isize`.
> +        let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;
> +
> +        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
> +        // and valid, but uninitialized.
> +        unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
> +    }
> +
> +    /// Appends an element to the back of the [`Vec`] instance.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = KVec::new();
> +    /// v.push(1, GFP_KERNEL)?;
> +    /// assert_eq!(&v, &[1]);
> +    ///
> +    /// v.push(2, GFP_KERNEL)?;
> +    /// assert_eq!(&v, &[1, 2]);
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
> +        self.reserve(1, flags)?;
> +
> +        // SAFETY:
> +        // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
> +        //   guaranteed to be part of the same allocated object.
> +        // - `self.len` can not overflow `isize`.
> +        let ptr = unsafe { self.as_mut_ptr().add(self.len) };
> +
> +        // SAFETY:
> +        // - `ptr` is properly aligned and valid for writes.
> +        unsafe { core::ptr::write(ptr, v) };
> +
> +        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
> +        // by 1. We also know that the new length is <= capacity because of the previous call to
> +        // `reserve` above.
> +        unsafe { self.set_len(self.len() + 1) };
> +        Ok(())
> +    }
> +
> +    /// Creates a new [`Vec`] instance with at least the given capacity.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
> +    ///
> +    /// assert!(v.capacity() >= 20);
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
> +        let mut v = Vec::new();
> +
> +        v.reserve(capacity, flags)?;
> +
> +        Ok(v)
> +    }
> +
> +    /// Creates a Vec<T, A> from a pointer, a length and a capacity using the allocator `A`.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = kernel::kvec![1, 2, 3]?;
> +    /// v.reserve(1, GFP_KERNEL)?;
> +    ///
> +    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
> +    ///
> +    /// // SAFETY: We've just reserved memory for another element.
> +    /// unsafe { ptr.add(len).write(4) };
> +    /// len += 1;
> +    ///
> +    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
> +    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
> +    /// // from the exact same raw parts.
> +    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
> +    ///
> +    /// assert_eq!(v, [1, 2, 3, 4]);
> +    ///
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    ///
> +    /// # Safety
> +    ///
> +    /// If `T` is a ZST:
> +    ///
> +    /// - `ptr` must be a dangling, well aligned pointer.
> +    ///
> +    /// Otherwise:
> +    ///
> +    /// - `ptr` must have been allocated with the allocator `A`.
> +    /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
> +    /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity`.
> +    ///    bytes.
> +    /// - The allocated size in bytes must not be larger than `isize::MAX`.
> +    /// - `length` must be less than or equal to `capacity`.
> +    /// - The first `length` elements must be initialized values of type `T`.
> +    ///
> +    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
> +    /// `cap` and `len`.
> +    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
> +        let layout = if Self::is_zst() {
> +            ArrayLayout::empty()
> +        } else {
> +            // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
> +            // smaller than `isize::MAX`.
> +            unsafe { ArrayLayout::new_unchecked(capacity) }
> +        };

Missing // INVARIANT here.

> +
> +        Self {
> +            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
> +            // memory allocation, allocated with `A`.
> +            ptr: unsafe { NonNull::new_unchecked(ptr) },
> +            layout,
> +            len: length,
> +            _p: PhantomData::<A>,
> +        }
> +    }
> +
> +    /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
> +    ///
> +    /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
> +    /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
> +    /// elements and free the allocation, if any.
> +    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
> +        let mut me = ManuallyDrop::new(self);
> +        let len = me.len();
> +        let capacity = me.capacity();
> +        let ptr = me.as_mut_ptr();
> +        (ptr, len, capacity)
> +    }
> +
> +    /// Ensures that the capacity exceeds the length by at least `additional`
> +    /// elements.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = KVec::new();
> +    /// v.push(1, GFP_KERNEL)?;
> +    ///
> +    /// v.reserve(10, GFP_KERNEL)?;
> +    /// let cap = v.capacity();
> +    /// assert!(cap >= 10);
> +    ///
> +    /// v.reserve(10, GFP_KERNEL)?;
> +    /// let new_cap = v.capacity();
> +    /// assert_eq!(new_cap, cap);
> +    ///
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
> +        let len = self.len();
> +        let cap = self.capacity();
> +
> +        if cap - len >= additional {
> +            return Ok(());
> +        }
> +
> +        if Self::is_zst() {
> +            // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
> +            return Err(AllocError);
> +        }
> +
> +        // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
> +        // multiplication by two won't overflow.
> +        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
> +        let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
> +
> +        // SAFETY:
> +        // - `ptr` is valid because it's either `None` or comes from a previous call to
> +        //   `A::realloc`.
> +        // - `self.layout` matches the `ArrayLayout` of the preceeding allocation.
> +        let ptr = unsafe {
> +            A::realloc(
> +                Some(self.ptr.cast()),
> +                layout.into(),
> +                self.layout.into(),
> +                flags,
> +            )?
> +        };

Missing // INVARIANT here.

> +
> +        self.ptr = ptr.cast();
> +        self.layout = layout;
> +
> +        Ok(())
> +    }
> +}