Add documentation on using coresight during panic
and watchdog.
Signed-off-by: Linu Cherian <lcherian@marvell.com>
---
Changelog from v9:
This patch has been newly introduced.
Documentation/trace/coresight/panic.rst | 356 ++++++++++++++++++++++++
1 file changed, 356 insertions(+)
create mode 100644 Documentation/trace/coresight/panic.rst
diff --git a/Documentation/trace/coresight/panic.rst b/Documentation/trace/coresight/panic.rst
new file mode 100644
index 000000000000..3b53d91cace8
--- /dev/null
+++ b/Documentation/trace/coresight/panic.rst
@@ -0,0 +1,356 @@
+===================================================
+Using Coresight for Kernel panic and Watchdog reset
+===================================================
+
+Introduction
+------------
+This documentation is about using Linux coresight trace support to
+debug kernel panic and watchdog reset scenarios.
+
+Coresight trace during Kernel panic
+-----------------------------------
+From the coresight driver point of view, addressing the kernel panic
+situation has four main requirements.
+
+a. Support for allocation of trace buffer pages from reserved memory area.
+ Platform can advertise this using a new device tree property added to
+ relevant coresight nodes.
+
+b. Support for stopping coresight blocks at the time of panic
+
+c. Saving required metadata in the specified format
+
+d. Support for reading trace data captured at the time of panic
+
+Allocation of trace buffer pages from reserved RAM
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+A new optional device tree property "memory-region" is added to the
+ETR/ETF device nodes, that would give the base address and size of trace
+buffer.
+
+Static allocation of trace buffers would ensure that both IOMMU enabled
+and disabled cases are handled. Also, platforms that support persistent
+RAM will allow users to read trace data in the subsequent boot without
+booting the crashdump kernel.
+
+Note:
+For ETR sink devices, this reserved region will be used for both trace
+capture and trace data retrieval.
+For ETF sink devices, internal SRAM would be used for trace capture,
+and they would be synced to reserved region for retrieval.
+
+
+Disabling coresight blocks at the time of panic
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+In order to avoid the situation of losing relevant trace data after a
+kernel panic, it would be desirable to stop the coresight blocks at the
+time of panic.
+
+This can be achieved by configuring the comparator, CTI and sink
+devices as below::
+
+ Trigger on panic
+ Comparator --->External out --->CTI -->External In---->ETR/ETF stop
+
+Saving metadata at the time of kernel panic
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Coresight metadata involves all additional data that are required for a
+successful trace decode in addition to the trace data. This involves
+ETR/ETF, ETE register snapshot etc.
+
+A new optional device property "memory-region" is added to
+the ETR/ETF/ETE device nodes for this.
+
+Reading trace data captured at the time of panic
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Trace data captured at the time of panic, can be read from rebooted kernel
+or from crashdump kernel using a special device file /dev/crash_tmc_xxx.
+This device file is created only when there is a valid crashdata available.
+
+General flow of trace capture and decode incase of kernel panic
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+1. Enable source and sink on all the cores using the sysfs interface.
+ ETR sinks should have trace buffers allocated from reserved memory,
+ by selecting "resrv" buffer mode from sysfs.
+
+2. Run relevant tests.
+
+3. On a kernel panic, all coresight blocks are disabled, necessary
+ metadata is synced by kernel panic handler.
+
+ System would eventually reboot or boot a crashdump kernel.
+
+4. For platforms that supports crashdump kernel, raw trace data can be
+ dumped using the coresight sysfs interface from the crashdump kernel
+ itself. Persistent RAM is not a requirement in this case.
+
+5. For platforms that supports persistent RAM, trace data can be dumped
+ using the coresight sysfs interface in the subsequent Linux boot.
+ Crashdump kernel is not a requirement in this case. Persistent RAM
+ ensures that trace data is intact across reboot.
+
+Coresight trace during Watchdog reset
+-------------------------------------
+The main difference between addressing the watchdog reset and kernel panic
+case are below,
+
+a. Saving coresight metadata need to be taken care by the
+ SCP(system control processor) firmware in the specified format,
+ instead of kernel.
+
+b. Reserved memory region given by firmware for trace buffer and metadata
+ has to be in persistent RAM.
+ Note: This is a requirement for watchdog reset case but optional
+ in kernel panic case.
+
+Watchdog reset can be supported only on platforms that meet the above
+two requirements.
+
+Sample commands for testing a Kernel panic case with ETR sink
+-------------------------------------------------------------
+
+1. Boot Linux kernel with "crash_kexec_post_notifiers" added to the kernel
+ bootargs. This is mandatory if the user would like to read the tracedata
+ from the crashdump kernel.
+
+2. Enable the preloaded ETM configuration
+
+ #echo 1 > /sys/kernel/config/cs-syscfg/configurations/panicstop/enable
+
+3. Configure CTI using sysfs interface::
+
+ #./cti_setup.sh
+
+ #cat cti_setup.sh
+
+
+ cd /sys/bus/coresight/devices/
+
+ ap_cti_config () {
+ #ETM trig out[0] trigger to Channel 0
+ echo 0 4 > channels/trigin_attach
+ }
+
+ etf_cti_config () {
+ #ETF Flush in trigger from Channel 0
+ echo 0 1 > channels/trigout_attach
+ echo 1 > channels/trig_filter_enable
+ }
+
+ etr_cti_config () {
+ #ETR Flush in from Channel 0
+ echo 0 1 > channels/trigout_attach
+ echo 1 > channels/trig_filter_enable
+ }
+
+ ctidevs=`find . -name "cti*"`
+
+ for i in $ctidevs
+ do
+ cd $i
+
+ connection=`find . -name "ete*"`
+ if [ ! -z "$connection" ]
+ then
+ echo "AP CTI config for $i"
+ ap_cti_config
+ fi
+
+ connection=`find . -name "tmc_etf*"`
+ if [ ! -z "$connection" ]
+ then
+ echo "ETF CTI config for $i"
+ etf_cti_config
+ fi
+
+ connection=`find . -name "tmc_etr*"`
+ if [ ! -z "$connection" ]
+ then
+ echo "ETR CTI config for $i"
+ etr_cti_config
+ fi
+
+ cd ..
+ done
+
+Note: CTI connections are SOC specific and hence the above script is
+added just for reference.
+
+4. Choose reserved buffer mode for ETR buffer
+ #echo "resrv" > /sys/bus/coresight/devices/tmc_etr0/buf_mode_preferred
+
+5. Enable stop on flush trigger configuration
+ #echo 1 > /sys/bus/coresight/devices/tmc_etr0/stop_on_flush
+
+6. Start Coresight tracing on cores 1 and 2 using sysfs interface
+
+7. Run some application on core 1
+ #taskset -c 1 dd if=/dev/urandom of=/dev/null &
+
+8. Invoke kernel panic on core 2
+ #echo 1 > /proc/sys/kernel/panic
+ #taskset -c 2 echo c > /proc/sysrq-trigger
+
+9. From rebooted kernel or crashdump kernel, read crashdata
+
+ #dd if=/dev/crash_tmc_etr0 of=/trace/cstrace.bin
+
+10. Run opencsd decoder tools/scripts to generate the instruction trace.
+
+Sample instruction trace dump
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Core1 dump::
+
+ A etm4_enable_hw: ffff800008ae1dd4
+ CONTEXT EL2 etm4_enable_hw: ffff800008ae1dd4
+ I etm4_enable_hw: ffff800008ae1dd4:
+ d503201f nop
+ I etm4_enable_hw: ffff800008ae1dd8:
+ d503201f nop
+ I etm4_enable_hw: ffff800008ae1ddc:
+ d503201f nop
+ I etm4_enable_hw: ffff800008ae1de0:
+ d503201f nop
+ I etm4_enable_hw: ffff800008ae1de4:
+ d503201f nop
+ I etm4_enable_hw: ffff800008ae1de8:
+ d503233f paciasp
+ I etm4_enable_hw: ffff800008ae1dec:
+ a9be7bfd stp x29, x30, [sp, #-32]!
+ I etm4_enable_hw: ffff800008ae1df0:
+ 910003fd mov x29, sp
+ I etm4_enable_hw: ffff800008ae1df4:
+ a90153f3 stp x19, x20, [sp, #16]
+ I etm4_enable_hw: ffff800008ae1df8:
+ 2a0003f4 mov w20, w0
+ I etm4_enable_hw: ffff800008ae1dfc:
+ 900085b3 adrp x19, ffff800009b95000 <reserved_mem+0xc48>
+ I etm4_enable_hw: ffff800008ae1e00:
+ 910f4273 add x19, x19, #0x3d0
+ I etm4_enable_hw: ffff800008ae1e04:
+ f8747a60 ldr x0, [x19, x20, lsl #3]
+ E etm4_enable_hw: ffff800008ae1e08:
+ b4000140 cbz x0, ffff800008ae1e30 <etm4_starting_cpu+0x50>
+ I 149.039572921 etm4_enable_hw: ffff800008ae1e30:
+ a94153f3 ldp x19, x20, [sp, #16]
+ I 149.039572921 etm4_enable_hw: ffff800008ae1e34:
+ 52800000 mov w0, #0x0 // #0
+ I 149.039572921 etm4_enable_hw: ffff800008ae1e38:
+ a8c27bfd ldp x29, x30, [sp], #32
+
+ ..snip
+
+ 149.052324811 chacha_block_generic: ffff800008642d80:
+ 9100a3e0 add x0,
+ I 149.052324811 chacha_block_generic: ffff800008642d84:
+ b86178a2 ldr w2, [x5, x1, lsl #2]
+ I 149.052324811 chacha_block_generic: ffff800008642d88:
+ 8b010803 add x3, x0, x1, lsl #2
+ I 149.052324811 chacha_block_generic: ffff800008642d8c:
+ b85fc063 ldur w3, [x3, #-4]
+ I 149.052324811 chacha_block_generic: ffff800008642d90:
+ 0b030042 add w2, w2, w3
+ I 149.052324811 chacha_block_generic: ffff800008642d94:
+ b8217882 str w2, [x4, x1, lsl #2]
+ I 149.052324811 chacha_block_generic: ffff800008642d98:
+ 91000421 add x1, x1, #0x1
+ I 149.052324811 chacha_block_generic: ffff800008642d9c:
+ f100443f cmp x1, #0x11
+
+
+Core 2 dump::
+
+ A etm4_enable_hw: ffff800008ae1dd4
+ CONTEXT EL2 etm4_enable_hw: ffff800008ae1dd4
+ I etm4_enable_hw: ffff800008ae1dd4:
+ d503201f nop
+ I etm4_enable_hw: ffff800008ae1dd8:
+ d503201f nop
+ I etm4_enable_hw: ffff800008ae1ddc:
+ d503201f nop
+ I etm4_enable_hw: ffff800008ae1de0:
+ d503201f nop
+ I etm4_enable_hw: ffff800008ae1de4:
+ d503201f nop
+ I etm4_enable_hw: ffff800008ae1de8:
+ d503233f paciasp
+ I etm4_enable_hw: ffff800008ae1dec:
+ a9be7bfd stp x29, x30, [sp, #-32]!
+ I etm4_enable_hw: ffff800008ae1df0:
+ 910003fd mov x29, sp
+ I etm4_enable_hw: ffff800008ae1df4:
+ a90153f3 stp x19, x20, [sp, #16]
+ I etm4_enable_hw: ffff800008ae1df8:
+ 2a0003f4 mov w20, w0
+ I etm4_enable_hw: ffff800008ae1dfc:
+ 900085b3 adrp x19, ffff800009b95000 <reserved_mem+0xc48>
+ I etm4_enable_hw: ffff800008ae1e00:
+ 910f4273 add x19, x19, #0x3d0
+ I etm4_enable_hw: ffff800008ae1e04:
+ f8747a60 ldr x0, [x19, x20, lsl #3]
+ E etm4_enable_hw: ffff800008ae1e08:
+ b4000140 cbz x0, ffff800008ae1e30 <etm4_starting_cpu+0x50>
+ I 149.046243445 etm4_enable_hw: ffff800008ae1e30:
+ a94153f3 ldp x19, x20, [sp, #16]
+ I 149.046243445 etm4_enable_hw: ffff800008ae1e34:
+ 52800000 mov w0, #0x0 // #0
+ I 149.046243445 etm4_enable_hw: ffff800008ae1e38:
+ a8c27bfd ldp x29, x30, [sp], #32
+ I 149.046243445 etm4_enable_hw: ffff800008ae1e3c:
+ d50323bf autiasp
+ E 149.046243445 etm4_enable_hw: ffff800008ae1e40:
+ d65f03c0 ret
+ A ete_sysreg_write: ffff800008adfa18
+
+ ..snip
+
+ I 149.05422547 panic: ffff800008096300:
+ a90363f7 stp x23, x24, [sp, #48]
+ I 149.05422547 panic: ffff800008096304:
+ 6b00003f cmp w1, w0
+ I 149.05422547 panic: ffff800008096308:
+ 3a411804 ccmn w0, #0x1, #0x4, ne // ne = any
+ N 149.05422547 panic: ffff80000809630c:
+ 540001e0 b.eq ffff800008096348 <panic+0xe0> // b.none
+ I 149.05422547 panic: ffff800008096310:
+ f90023f9 str x25, [sp, #64]
+ E 149.05422547 panic: ffff800008096314:
+ 97fe44ef bl ffff8000080276d0 <panic_smp_self_stop>
+ A panic: ffff80000809634c
+ I 149.05422547 panic: ffff80000809634c:
+ 910102d5 add x21, x22, #0x40
+ I 149.05422547 panic: ffff800008096350:
+ 52800020 mov w0, #0x1 // #1
+ E 149.05422547 panic: ffff800008096354:
+ 94166b8b bl ffff800008631180 <bust_spinlocks>
+ N 149.054225518 bust_spinlocks: ffff800008631180:
+ 340000c0 cbz w0, ffff800008631198 <bust_spinlocks+0x18>
+ I 149.054225518 bust_spinlocks: ffff800008631184:
+ f000a321 adrp x1, ffff800009a98000 <pbufs.0+0xbb8>
+ I 149.054225518 bust_spinlocks: ffff800008631188:
+ b9405c20 ldr w0, [x1, #92]
+ I 149.054225518 bust_spinlocks: ffff80000863118c:
+ 11000400 add w0, w0, #0x1
+ I 149.054225518 bust_spinlocks: ffff800008631190:
+ b9005c20 str w0, [x1, #92]
+ E 149.054225518 bust_spinlocks: ffff800008631194:
+ d65f03c0 ret
+ A panic: ffff800008096358
+
+Perf based testing
+------------------
+
+Starting perf session
+~~~~~~~~~~~~~~~~~~~~~
+ETF:
+perf record -e cs_etm/panicstop,@tmc_etf1/ -C 1
+perf record -e cs_etm/panicstop,@tmc_etf2/ -C 2
+
+ETR:
+perf record -e cs_etm/panicstop,@tmc_etr0/ -C 1,2
+
+Reading trace data after panic
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Same sysfs based method explained above can be used to retrieve and
+decode the trace data after the reboot on kernel panic.
--
2.34.1
Hi Linu On 16/09/2024 11:34, Linu Cherian wrote: > Add documentation on using coresight during panic > and watchdog. Thank you so much for the documentation, this will be quite useful ! Some minor comments below. > > Signed-off-by: Linu Cherian <lcherian@marvell.com> > --- > Changelog from v9: > This patch has been newly introduced. > > Documentation/trace/coresight/panic.rst | 356 ++++++++++++++++++++++++ > 1 file changed, 356 insertions(+) > create mode 100644 Documentation/trace/coresight/panic.rst > > diff --git a/Documentation/trace/coresight/panic.rst b/Documentation/trace/coresight/panic.rst > new file mode 100644 > index 000000000000..3b53d91cace8 > --- /dev/null > +++ b/Documentation/trace/coresight/panic.rst > @@ -0,0 +1,356 @@ > +=================================================== > +Using Coresight for Kernel panic and Watchdog reset > +=================================================== > + > +Introduction > +------------ > +This documentation is about using Linux coresight trace support to > +debug kernel panic and watchdog reset scenarios. > + > +Coresight trace during Kernel panic > +----------------------------------- > +From the coresight driver point of view, addressing the kernel panic > +situation has four main requirements. > + > +a. Support for allocation of trace buffer pages from reserved memory area. > + Platform can advertise this using a new device tree property added to > + relevant coresight nodes. > + > +b. Support for stopping coresight blocks at the time of panic > + > +c. Saving required metadata in the specified format > + > +d. Support for reading trace data captured at the time of panic > + > +Allocation of trace buffer pages from reserved RAM > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > +A new optional device tree property "memory-region" is added to the > +ETR/ETF device nodes, that would give the base address and size of trace ETR/ETF => CoreSight TMC > +buffer. > + > +Static allocation of trace buffers would ensure that both IOMMU enabled > +and disabled cases are handled. Also, platforms that support persistent > +RAM will allow users to read trace data in the subsequent boot without > +booting the crashdump kernel. > + > +Note: > +For ETR sink devices, this reserved region will be used for both trace > +capture and trace data retrieval. > +For ETF sink devices, internal SRAM would be used for trace capture, > +and they would be synced to reserved region for retrieval. > + > + > +Disabling coresight blocks at the time of panic > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > +In order to avoid the situation of losing relevant trace data after a > +kernel panic, it would be desirable to stop the coresight blocks at the > +time of panic. > + > +This can be achieved by configuring the comparator, CTI and sink > +devices as below:: > + > + Trigger on panic > + Comparator --->External out --->CTI -->External In---->ETR/ETF stop > + > +Saving metadata at the time of kernel panic > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > +Coresight metadata involves all additional data that are required for a > +successful trace decode in addition to the trace data. This involves > +ETR/ETF, ETE register snapshot etc. s/ETE/ETB ? > + > +A new optional device property "memory-region" is added to > +the ETR/ETF/ETE device nodes for this. same here ^^ > + > +Reading trace data captured at the time of panic > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > +Trace data captured at the time of panic, can be read from rebooted kernel > +or from crashdump kernel using a special device file /dev/crash_tmc_xxx. > +This device file is created only when there is a valid crashdata available. > + > +General flow of trace capture and decode incase of kernel panic > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > +1. Enable source and sink on all the cores using the sysfs interface. > + ETR sinks should have trace buffers allocated from reserved memory, > + by selecting "resrv" buffer mode from sysfs. > + > +2. Run relevant tests. > + > +3. On a kernel panic, all coresight blocks are disabled, necessary > + metadata is synced by kernel panic handler. > + > + System would eventually reboot or boot a crashdump kernel. > + > +4. For platforms that supports crashdump kernel, raw trace data can be > + dumped using the coresight sysfs interface from the crashdump kernel > + itself. Persistent RAM is not a requirement in this case. > + > +5. For platforms that supports persistent RAM, trace data can be dumped > + using the coresight sysfs interface in the subsequent Linux boot. > + Crashdump kernel is not a requirement in this case. Persistent RAM > + ensures that trace data is intact across reboot. > + > +Coresight trace during Watchdog reset > +------------------------------------- > +The main difference between addressing the watchdog reset and kernel panic > +case are below, > + > +a. Saving coresight metadata need to be taken care by the > + SCP(system control processor) firmware in the specified format, > + instead of kernel. > + > +b. Reserved memory region given by firmware for trace buffer and metadata > + has to be in persistent RAM. > + Note: This is a requirement for watchdog reset case but optional > + in kernel panic case. > + > +Watchdog reset can be supported only on platforms that meet the above > +two requirements. > + > +Sample commands for testing a Kernel panic case with ETR sink > +------------------------------------------------------------- > + > +1. Boot Linux kernel with "crash_kexec_post_notifiers" added to the kernel > + bootargs. This is mandatory if the user would like to read the tracedata > + from the crashdump kernel. > + > +2. Enable the preloaded ETM configuration > + > + #echo 1 > /sys/kernel/config/cs-syscfg/configurations/panicstop/enable > + > +3. Configure CTI using sysfs interface:: > + > + #./cti_setup.sh > + > + #cat cti_setup.sh > + > + > + cd /sys/bus/coresight/devices/ > + > + ap_cti_config () { > + #ETM trig out[0] trigger to Channel 0 > + echo 0 4 > channels/trigin_attach > + } > + > + etf_cti_config () { > + #ETF Flush in trigger from Channel 0 > + echo 0 1 > channels/trigout_attach > + echo 1 > channels/trig_filter_enable > + } > + > + etr_cti_config () { > + #ETR Flush in from Channel 0 > + echo 0 1 > channels/trigout_attach > + echo 1 > channels/trig_filter_enable > + } > + > + ctidevs=`find . -name "cti*"` > + > + for i in $ctidevs > + do > + cd $i > + > + connection=`find . -name "ete*"` minor nit: this could be ete or etm > + if [ ! -z "$connection" ] > + then > + echo "AP CTI config for $i" > + ap_cti_config > + fi > + > + connection=`find . -name "tmc_etf*"` > + if [ ! -z "$connection" ] > + then > + echo "ETF CTI config for $i" > + etf_cti_config > + fi > + > + connection=`find . -name "tmc_etr*"` > + if [ ! -z "$connection" ] > + then > + echo "ETR CTI config for $i" > + etr_cti_config > + fi > + > + cd .. > + done > + > +Note: CTI connections are SOC specific and hence the above script is > +added just for reference. > + > +4. Choose reserved buffer mode for ETR buffer > + #echo "resrv" > /sys/bus/coresight/devices/tmc_etr0/buf_mode_preferred > + > +5. Enable stop on flush trigger configuration > + #echo 1 > /sys/bus/coresight/devices/tmc_etr0/stop_on_flush > + > +6. Start Coresight tracing on cores 1 and 2 using sysfs interface > + > +7. Run some application on core 1 > + #taskset -c 1 dd if=/dev/urandom of=/dev/null & > + > +8. Invoke kernel panic on core 2 > + #echo 1 > /proc/sys/kernel/panic > + #taskset -c 2 echo c > /proc/sysrq-trigger > + > +9. From rebooted kernel or crashdump kernel, read crashdata > + > + #dd if=/dev/crash_tmc_etr0 of=/trace/cstrace.bin > + > +10. Run opencsd decoder tools/scripts to generate the instruction trace. > + > +Sample instruction trace dump > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > + > +Core1 dump:: > + > + A etm4_enable_hw: ffff800008ae1dd4 > + CONTEXT EL2 etm4_enable_hw: ffff800008ae1dd4 > + I etm4_enable_hw: ffff800008ae1dd4: > + d503201f nop > + I etm4_enable_hw: ffff800008ae1dd8: > + d503201f nop > + I etm4_enable_hw: ffff800008ae1ddc: > + d503201f nop > + I etm4_enable_hw: ffff800008ae1de0: > + d503201f nop > + I etm4_enable_hw: ffff800008ae1de4: > + d503201f nop > + I etm4_enable_hw: ffff800008ae1de8: > + d503233f paciasp > + I etm4_enable_hw: ffff800008ae1dec: > + a9be7bfd stp x29, x30, [sp, #-32]! > + I etm4_enable_hw: ffff800008ae1df0: > + 910003fd mov x29, sp > + I etm4_enable_hw: ffff800008ae1df4: > + a90153f3 stp x19, x20, [sp, #16] > + I etm4_enable_hw: ffff800008ae1df8: > + 2a0003f4 mov w20, w0 > + I etm4_enable_hw: ffff800008ae1dfc: > + 900085b3 adrp x19, ffff800009b95000 <reserved_mem+0xc48> > + I etm4_enable_hw: ffff800008ae1e00: > + 910f4273 add x19, x19, #0x3d0 > + I etm4_enable_hw: ffff800008ae1e04: > + f8747a60 ldr x0, [x19, x20, lsl #3] > + E etm4_enable_hw: ffff800008ae1e08: > + b4000140 cbz x0, ffff800008ae1e30 <etm4_starting_cpu+0x50> > + I 149.039572921 etm4_enable_hw: ffff800008ae1e30: > + a94153f3 ldp x19, x20, [sp, #16] > + I 149.039572921 etm4_enable_hw: ffff800008ae1e34: > + 52800000 mov w0, #0x0 // #0 > + I 149.039572921 etm4_enable_hw: ffff800008ae1e38: > + a8c27bfd ldp x29, x30, [sp], #32 > + > + ..snip > + > + 149.052324811 chacha_block_generic: ffff800008642d80: > + 9100a3e0 add x0, > + I 149.052324811 chacha_block_generic: ffff800008642d84: > + b86178a2 ldr w2, [x5, x1, lsl #2] > + I 149.052324811 chacha_block_generic: ffff800008642d88: > + 8b010803 add x3, x0, x1, lsl #2 > + I 149.052324811 chacha_block_generic: ffff800008642d8c: > + b85fc063 ldur w3, [x3, #-4] > + I 149.052324811 chacha_block_generic: ffff800008642d90: > + 0b030042 add w2, w2, w3 > + I 149.052324811 chacha_block_generic: ffff800008642d94: > + b8217882 str w2, [x4, x1, lsl #2] > + I 149.052324811 chacha_block_generic: ffff800008642d98: > + 91000421 add x1, x1, #0x1 > + I 149.052324811 chacha_block_generic: ffff800008642d9c: > + f100443f cmp x1, #0x11 > + > + > +Core 2 dump:: > + > + A etm4_enable_hw: ffff800008ae1dd4 > + CONTEXT EL2 etm4_enable_hw: ffff800008ae1dd4 > + I etm4_enable_hw: ffff800008ae1dd4: > + d503201f nop > + I etm4_enable_hw: ffff800008ae1dd8: > + d503201f nop > + I etm4_enable_hw: ffff800008ae1ddc: > + d503201f nop > + I etm4_enable_hw: ffff800008ae1de0: > + d503201f nop > + I etm4_enable_hw: ffff800008ae1de4: > + d503201f nop > + I etm4_enable_hw: ffff800008ae1de8: > + d503233f paciasp > + I etm4_enable_hw: ffff800008ae1dec: > + a9be7bfd stp x29, x30, [sp, #-32]! > + I etm4_enable_hw: ffff800008ae1df0: > + 910003fd mov x29, sp > + I etm4_enable_hw: ffff800008ae1df4: > + a90153f3 stp x19, x20, [sp, #16] > + I etm4_enable_hw: ffff800008ae1df8: > + 2a0003f4 mov w20, w0 > + I etm4_enable_hw: ffff800008ae1dfc: > + 900085b3 adrp x19, ffff800009b95000 <reserved_mem+0xc48> > + I etm4_enable_hw: ffff800008ae1e00: > + 910f4273 add x19, x19, #0x3d0 > + I etm4_enable_hw: ffff800008ae1e04: > + f8747a60 ldr x0, [x19, x20, lsl #3] > + E etm4_enable_hw: ffff800008ae1e08: > + b4000140 cbz x0, ffff800008ae1e30 <etm4_starting_cpu+0x50> > + I 149.046243445 etm4_enable_hw: ffff800008ae1e30: > + a94153f3 ldp x19, x20, [sp, #16] > + I 149.046243445 etm4_enable_hw: ffff800008ae1e34: > + 52800000 mov w0, #0x0 // #0 > + I 149.046243445 etm4_enable_hw: ffff800008ae1e38: > + a8c27bfd ldp x29, x30, [sp], #32 > + I 149.046243445 etm4_enable_hw: ffff800008ae1e3c: > + d50323bf autiasp > + E 149.046243445 etm4_enable_hw: ffff800008ae1e40: > + d65f03c0 ret > + A ete_sysreg_write: ffff800008adfa18 > + > + ..snip > + > + I 149.05422547 panic: ffff800008096300: > + a90363f7 stp x23, x24, [sp, #48] > + I 149.05422547 panic: ffff800008096304: > + 6b00003f cmp w1, w0 > + I 149.05422547 panic: ffff800008096308: > + 3a411804 ccmn w0, #0x1, #0x4, ne // ne = any > + N 149.05422547 panic: ffff80000809630c: > + 540001e0 b.eq ffff800008096348 <panic+0xe0> // b.none > + I 149.05422547 panic: ffff800008096310: > + f90023f9 str x25, [sp, #64] > + E 149.05422547 panic: ffff800008096314: > + 97fe44ef bl ffff8000080276d0 <panic_smp_self_stop> > + A panic: ffff80000809634c > + I 149.05422547 panic: ffff80000809634c: > + 910102d5 add x21, x22, #0x40 > + I 149.05422547 panic: ffff800008096350: > + 52800020 mov w0, #0x1 // #1 > + E 149.05422547 panic: ffff800008096354: > + 94166b8b bl ffff800008631180 <bust_spinlocks> > + N 149.054225518 bust_spinlocks: ffff800008631180: > + 340000c0 cbz w0, ffff800008631198 <bust_spinlocks+0x18> > + I 149.054225518 bust_spinlocks: ffff800008631184: > + f000a321 adrp x1, ffff800009a98000 <pbufs.0+0xbb8> > + I 149.054225518 bust_spinlocks: ffff800008631188: > + b9405c20 ldr w0, [x1, #92] > + I 149.054225518 bust_spinlocks: ffff80000863118c: > + 11000400 add w0, w0, #0x1 > + I 149.054225518 bust_spinlocks: ffff800008631190: > + b9005c20 str w0, [x1, #92] > + E 149.054225518 bust_spinlocks: ffff800008631194: > + d65f03c0 ret > + A panic: ffff800008096358 > + > +Perf based testing > +------------------ > + > +Starting perf session > +~~~~~~~~~~~~~~~~~~~~~ > +ETF: > +perf record -e cs_etm/panicstop,@tmc_etf1/ -C 1 > +perf record -e cs_etm/panicstop,@tmc_etf2/ -C 2 > + > +ETR: > +perf record -e cs_etm/panicstop,@tmc_etr0/ -C 1,2 > + > +Reading trace data after panic > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > +Same sysfs based method explained above can be used to retrieve and > +decode the trace data after the reboot on kernel panic.
On 2024-10-03 at 19:13:10, Suzuki K Poulose (suzuki.poulose@arm.com) wrote: > Hi Linu > > On 16/09/2024 11:34, Linu Cherian wrote: > > Add documentation on using coresight during panic > > and watchdog. > > Thank you so much for the documentation, this will be quite useful ! > > Some minor comments below. > > > > > Signed-off-by: Linu Cherian <lcherian@marvell.com> > > --- > > Changelog from v9: > > This patch has been newly introduced. > > > > Documentation/trace/coresight/panic.rst | 356 ++++++++++++++++++++++++ > > 1 file changed, 356 insertions(+) > > create mode 100644 Documentation/trace/coresight/panic.rst > > > > diff --git a/Documentation/trace/coresight/panic.rst b/Documentation/trace/coresight/panic.rst > > new file mode 100644 > > index 000000000000..3b53d91cace8 > > --- /dev/null > > +++ b/Documentation/trace/coresight/panic.rst > > @@ -0,0 +1,356 @@ > > +=================================================== > > +Using Coresight for Kernel panic and Watchdog reset > > +=================================================== > > + > > +Introduction > > +------------ > > +This documentation is about using Linux coresight trace support to > > +debug kernel panic and watchdog reset scenarios. > > + > > +Coresight trace during Kernel panic > > +----------------------------------- > > +From the coresight driver point of view, addressing the kernel panic > > +situation has four main requirements. > > + > > +a. Support for allocation of trace buffer pages from reserved memory area. > > + Platform can advertise this using a new device tree property added to > > + relevant coresight nodes. > > + > > +b. Support for stopping coresight blocks at the time of panic > > + > > +c. Saving required metadata in the specified format > > + > > +d. Support for reading trace data captured at the time of panic > > + > > +Allocation of trace buffer pages from reserved RAM > > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > > +A new optional device tree property "memory-region" is added to the > > +ETR/ETF device nodes, that would give the base address and size of trace > > ETR/ETF => CoreSight TMC Ack. > > > +buffer. > > + > > +Static allocation of trace buffers would ensure that both IOMMU enabled > > +and disabled cases are handled. Also, platforms that support persistent > > +RAM will allow users to read trace data in the subsequent boot without > > +booting the crashdump kernel. > > + > > +Note: > > +For ETR sink devices, this reserved region will be used for both trace > > +capture and trace data retrieval. > > +For ETF sink devices, internal SRAM would be used for trace capture, > > +and they would be synced to reserved region for retrieval. > > + > > + > > +Disabling coresight blocks at the time of panic > > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > > +In order to avoid the situation of losing relevant trace data after a > > +kernel panic, it would be desirable to stop the coresight blocks at the > > +time of panic. > > + > > +This can be achieved by configuring the comparator, CTI and sink > > +devices as below:: > > + > > + Trigger on panic > > + Comparator --->External out --->CTI -->External In---->ETR/ETF stop > > + > > +Saving metadata at the time of kernel panic > > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > > +Coresight metadata involves all additional data that are required for a > > +successful trace decode in addition to the trace data. This involves > > +ETR/ETF, ETE register snapshot etc. > > s/ETE/ETB ? Ack. > > > + > > +A new optional device property "memory-region" is added to > > +the ETR/ETF/ETE device nodes for this. > > same here ^^ Ack. > > > > + > > +Reading trace data captured at the time of panic > > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > > +Trace data captured at the time of panic, can be read from rebooted kernel > > +or from crashdump kernel using a special device file /dev/crash_tmc_xxx. > > +This device file is created only when there is a valid crashdata available. > > + > > +General flow of trace capture and decode incase of kernel panic > > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > > +1. Enable source and sink on all the cores using the sysfs interface. > > + ETR sinks should have trace buffers allocated from reserved memory, > > + by selecting "resrv" buffer mode from sysfs. > > + > > +2. Run relevant tests. > > + > > +3. On a kernel panic, all coresight blocks are disabled, necessary > > + metadata is synced by kernel panic handler. > > + > > + System would eventually reboot or boot a crashdump kernel. > > + > > +4. For platforms that supports crashdump kernel, raw trace data can be > > + dumped using the coresight sysfs interface from the crashdump kernel > > + itself. Persistent RAM is not a requirement in this case. > > + > > +5. For platforms that supports persistent RAM, trace data can be dumped > > + using the coresight sysfs interface in the subsequent Linux boot. > > + Crashdump kernel is not a requirement in this case. Persistent RAM > > + ensures that trace data is intact across reboot. > > + > > +Coresight trace during Watchdog reset > > +------------------------------------- > > +The main difference between addressing the watchdog reset and kernel panic > > +case are below, > > + > > +a. Saving coresight metadata need to be taken care by the > > + SCP(system control processor) firmware in the specified format, > > + instead of kernel. > > + > > +b. Reserved memory region given by firmware for trace buffer and metadata > > + has to be in persistent RAM. > > + Note: This is a requirement for watchdog reset case but optional > > + in kernel panic case. > > + > > +Watchdog reset can be supported only on platforms that meet the above > > +two requirements. > > + > > +Sample commands for testing a Kernel panic case with ETR sink > > +------------------------------------------------------------- > > + > > +1. Boot Linux kernel with "crash_kexec_post_notifiers" added to the kernel > > + bootargs. This is mandatory if the user would like to read the tracedata > > + from the crashdump kernel. > > + > > +2. Enable the preloaded ETM configuration > > + > > + #echo 1 > /sys/kernel/config/cs-syscfg/configurations/panicstop/enable > > + > > +3. Configure CTI using sysfs interface:: > > + > > + #./cti_setup.sh > > + > > + #cat cti_setup.sh > > + > > + > > + cd /sys/bus/coresight/devices/ > > + > > + ap_cti_config () { > > + #ETM trig out[0] trigger to Channel 0 > > + echo 0 4 > channels/trigin_attach > > + } > > + > > + etf_cti_config () { > > + #ETF Flush in trigger from Channel 0 > > + echo 0 1 > channels/trigout_attach > > + echo 1 > channels/trig_filter_enable > > + } > > + > > + etr_cti_config () { > > + #ETR Flush in from Channel 0 > > + echo 0 1 > channels/trigout_attach > > + echo 1 > channels/trig_filter_enable > > + } > > + > > + ctidevs=`find . -name "cti*"` > > + > > + for i in $ctidevs > > + do > > + cd $i > > + > > + connection=`find . -name "ete*"` > > minor nit: this could be ete or etm Ack. > > > + if [ ! -z "$connection" ] > > + then > > + echo "AP CTI config for $i" > > + ap_cti_config > > + fi > > + > > + connection=`find . -name "tmc_etf*"` > > + if [ ! -z "$connection" ] > > + then > > + echo "ETF CTI config for $i" > > + etf_cti_config > > + fi > > + > > + connection=`find . -name "tmc_etr*"` > > + if [ ! -z "$connection" ] > > + then > > + echo "ETR CTI config for $i" > > + etr_cti_config > > + fi > > + > > + cd .. > > + done > > + > > +Note: CTI connections are SOC specific and hence the above script is > > +added just for reference. > > + > > +4. Choose reserved buffer mode for ETR buffer > > + #echo "resrv" > /sys/bus/coresight/devices/tmc_etr0/buf_mode_preferred > > + > > +5. Enable stop on flush trigger configuration > > + #echo 1 > /sys/bus/coresight/devices/tmc_etr0/stop_on_flush > > + > > +6. Start Coresight tracing on cores 1 and 2 using sysfs interface > > + > > +7. Run some application on core 1 > > + #taskset -c 1 dd if=/dev/urandom of=/dev/null & > > + > > +8. Invoke kernel panic on core 2 > > + #echo 1 > /proc/sys/kernel/panic > > + #taskset -c 2 echo c > /proc/sysrq-trigger > > + > > +9. From rebooted kernel or crashdump kernel, read crashdata > > + > > + #dd if=/dev/crash_tmc_etr0 of=/trace/cstrace.bin > > + > > +10. Run opencsd decoder tools/scripts to generate the instruction trace. > > + > > +Sample instruction trace dump > > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > > + > > +Core1 dump:: > > + > > + A etm4_enable_hw: ffff800008ae1dd4 > > + CONTEXT EL2 etm4_enable_hw: ffff800008ae1dd4 > > + I etm4_enable_hw: ffff800008ae1dd4: > > + d503201f nop > > + I etm4_enable_hw: ffff800008ae1dd8: > > + d503201f nop > > + I etm4_enable_hw: ffff800008ae1ddc: > > + d503201f nop > > + I etm4_enable_hw: ffff800008ae1de0: > > + d503201f nop > > + I etm4_enable_hw: ffff800008ae1de4: > > + d503201f nop > > + I etm4_enable_hw: ffff800008ae1de8: > > + d503233f paciasp > > + I etm4_enable_hw: ffff800008ae1dec: > > + a9be7bfd stp x29, x30, [sp, #-32]! > > + I etm4_enable_hw: ffff800008ae1df0: > > + 910003fd mov x29, sp > > + I etm4_enable_hw: ffff800008ae1df4: > > + a90153f3 stp x19, x20, [sp, #16] > > + I etm4_enable_hw: ffff800008ae1df8: > > + 2a0003f4 mov w20, w0 > > + I etm4_enable_hw: ffff800008ae1dfc: > > + 900085b3 adrp x19, ffff800009b95000 <reserved_mem+0xc48> > > + I etm4_enable_hw: ffff800008ae1e00: > > + 910f4273 add x19, x19, #0x3d0 > > + I etm4_enable_hw: ffff800008ae1e04: > > + f8747a60 ldr x0, [x19, x20, lsl #3] > > + E etm4_enable_hw: ffff800008ae1e08: > > + b4000140 cbz x0, ffff800008ae1e30 <etm4_starting_cpu+0x50> > > + I 149.039572921 etm4_enable_hw: ffff800008ae1e30: > > + a94153f3 ldp x19, x20, [sp, #16] > > + I 149.039572921 etm4_enable_hw: ffff800008ae1e34: > > + 52800000 mov w0, #0x0 // #0 > > + I 149.039572921 etm4_enable_hw: ffff800008ae1e38: > > + a8c27bfd ldp x29, x30, [sp], #32 > > + > > + ..snip > > + > > + 149.052324811 chacha_block_generic: ffff800008642d80: > > + 9100a3e0 add x0, > > + I 149.052324811 chacha_block_generic: ffff800008642d84: > > + b86178a2 ldr w2, [x5, x1, lsl #2] > > + I 149.052324811 chacha_block_generic: ffff800008642d88: > > + 8b010803 add x3, x0, x1, lsl #2 > > + I 149.052324811 chacha_block_generic: ffff800008642d8c: > > + b85fc063 ldur w3, [x3, #-4] > > + I 149.052324811 chacha_block_generic: ffff800008642d90: > > + 0b030042 add w2, w2, w3 > > + I 149.052324811 chacha_block_generic: ffff800008642d94: > > + b8217882 str w2, [x4, x1, lsl #2] > > + I 149.052324811 chacha_block_generic: ffff800008642d98: > > + 91000421 add x1, x1, #0x1 > > + I 149.052324811 chacha_block_generic: ffff800008642d9c: > > + f100443f cmp x1, #0x11 > > + > > + > > +Core 2 dump:: > > + > > + A etm4_enable_hw: ffff800008ae1dd4 > > + CONTEXT EL2 etm4_enable_hw: ffff800008ae1dd4 > > + I etm4_enable_hw: ffff800008ae1dd4: > > + d503201f nop > > + I etm4_enable_hw: ffff800008ae1dd8: > > + d503201f nop > > + I etm4_enable_hw: ffff800008ae1ddc: > > + d503201f nop > > + I etm4_enable_hw: ffff800008ae1de0: > > + d503201f nop > > + I etm4_enable_hw: ffff800008ae1de4: > > + d503201f nop > > + I etm4_enable_hw: ffff800008ae1de8: > > + d503233f paciasp > > + I etm4_enable_hw: ffff800008ae1dec: > > + a9be7bfd stp x29, x30, [sp, #-32]! > > + I etm4_enable_hw: ffff800008ae1df0: > > + 910003fd mov x29, sp > > + I etm4_enable_hw: ffff800008ae1df4: > > + a90153f3 stp x19, x20, [sp, #16] > > + I etm4_enable_hw: ffff800008ae1df8: > > + 2a0003f4 mov w20, w0 > > + I etm4_enable_hw: ffff800008ae1dfc: > > + 900085b3 adrp x19, ffff800009b95000 <reserved_mem+0xc48> > > + I etm4_enable_hw: ffff800008ae1e00: > > + 910f4273 add x19, x19, #0x3d0 > > + I etm4_enable_hw: ffff800008ae1e04: > > + f8747a60 ldr x0, [x19, x20, lsl #3] > > + E etm4_enable_hw: ffff800008ae1e08: > > + b4000140 cbz x0, ffff800008ae1e30 <etm4_starting_cpu+0x50> > > + I 149.046243445 etm4_enable_hw: ffff800008ae1e30: > > + a94153f3 ldp x19, x20, [sp, #16] > > + I 149.046243445 etm4_enable_hw: ffff800008ae1e34: > > + 52800000 mov w0, #0x0 // #0 > > + I 149.046243445 etm4_enable_hw: ffff800008ae1e38: > > + a8c27bfd ldp x29, x30, [sp], #32 > > + I 149.046243445 etm4_enable_hw: ffff800008ae1e3c: > > + d50323bf autiasp > > + E 149.046243445 etm4_enable_hw: ffff800008ae1e40: > > + d65f03c0 ret > > + A ete_sysreg_write: ffff800008adfa18 > > + > > + ..snip > > + > > + I 149.05422547 panic: ffff800008096300: > > + a90363f7 stp x23, x24, [sp, #48] > > + I 149.05422547 panic: ffff800008096304: > > + 6b00003f cmp w1, w0 > > + I 149.05422547 panic: ffff800008096308: > > + 3a411804 ccmn w0, #0x1, #0x4, ne // ne = any > > + N 149.05422547 panic: ffff80000809630c: > > + 540001e0 b.eq ffff800008096348 <panic+0xe0> // b.none > > + I 149.05422547 panic: ffff800008096310: > > + f90023f9 str x25, [sp, #64] > > + E 149.05422547 panic: ffff800008096314: > > + 97fe44ef bl ffff8000080276d0 <panic_smp_self_stop> > > + A panic: ffff80000809634c > > + I 149.05422547 panic: ffff80000809634c: > > + 910102d5 add x21, x22, #0x40 > > + I 149.05422547 panic: ffff800008096350: > > + 52800020 mov w0, #0x1 // #1 > > + E 149.05422547 panic: ffff800008096354: > > + 94166b8b bl ffff800008631180 <bust_spinlocks> > > + N 149.054225518 bust_spinlocks: ffff800008631180: > > + 340000c0 cbz w0, ffff800008631198 <bust_spinlocks+0x18> > > + I 149.054225518 bust_spinlocks: ffff800008631184: > > + f000a321 adrp x1, ffff800009a98000 <pbufs.0+0xbb8> > > + I 149.054225518 bust_spinlocks: ffff800008631188: > > + b9405c20 ldr w0, [x1, #92] > > + I 149.054225518 bust_spinlocks: ffff80000863118c: > > + 11000400 add w0, w0, #0x1 > > + I 149.054225518 bust_spinlocks: ffff800008631190: > > + b9005c20 str w0, [x1, #92] > > + E 149.054225518 bust_spinlocks: ffff800008631194: > > + d65f03c0 ret > > + A panic: ffff800008096358 > > + > > +Perf based testing > > +------------------ > > + > > +Starting perf session > > +~~~~~~~~~~~~~~~~~~~~~ > > +ETF: > > +perf record -e cs_etm/panicstop,@tmc_etf1/ -C 1 > > +perf record -e cs_etm/panicstop,@tmc_etf2/ -C 2 > > + > > +ETR: > > +perf record -e cs_etm/panicstop,@tmc_etr0/ -C 1,2 > > + > > +Reading trace data after panic > > +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > > +Same sysfs based method explained above can be used to retrieve and > > +decode the trace data after the reboot on kernel panic. > > Linu Cherian
On Mon, Sep 16, 2024 at 04:04:37PM +0530, Linu Cherian wrote: > +3. On a kernel panic, all coresight blocks are disabled, necessary > + metadata is synced by kernel panic handler. "... and necessary metadata ..." > + > + System would eventually reboot or boot a crashdump kernel. > + > +4. For platforms that supports crashdump kernel, raw trace data can be > + dumped using the coresight sysfs interface from the crashdump kernel > + itself. Persistent RAM is not a requirement in this case. > + > +5. For platforms that supports persistent RAM, trace data can be dumped > + using the coresight sysfs interface in the subsequent Linux boot. > + Crashdump kernel is not a requirement in this case. Persistent RAM > + ensures that trace data is intact across reboot. > + > +Coresight trace during Watchdog reset > +------------------------------------- > +The main difference between addressing the watchdog reset and kernel panic > +case are below, "... are:" > +Sample commands for testing a Kernel panic case with ETR sink > +------------------------------------------------------------- > + > +1. Boot Linux kernel with "crash_kexec_post_notifiers" added to the kernel > + bootargs. This is mandatory if the user would like to read the tracedata > + from the crashdump kernel. > + > +2. Enable the preloaded ETM configuration > + > + #echo 1 > /sys/kernel/config/cs-syscfg/configurations/panicstop/enable > + > +3. Configure CTI using sysfs interface:: > + > + #./cti_setup.sh > + > + #cat cti_setup.sh > + > + > + cd /sys/bus/coresight/devices/ > + > + ap_cti_config () { > + #ETM trig out[0] trigger to Channel 0 > + echo 0 4 > channels/trigin_attach > + } > + > + etf_cti_config () { > + #ETF Flush in trigger from Channel 0 > + echo 0 1 > channels/trigout_attach > + echo 1 > channels/trig_filter_enable > + } > + > + etr_cti_config () { > + #ETR Flush in from Channel 0 > + echo 0 1 > channels/trigout_attach > + echo 1 > channels/trig_filter_enable > + } > + > + ctidevs=`find . -name "cti*"` > + > + for i in $ctidevs > + do > + cd $i > + > + connection=`find . -name "ete*"` > + if [ ! -z "$connection" ] > + then > + echo "AP CTI config for $i" > + ap_cti_config > + fi > + > + connection=`find . -name "tmc_etf*"` > + if [ ! -z "$connection" ] > + then > + echo "ETF CTI config for $i" > + etf_cti_config > + fi > + > + connection=`find . -name "tmc_etr*"` > + if [ ! -z "$connection" ] > + then > + echo "ETR CTI config for $i" > + etr_cti_config > + fi > + > + cd .. > + done > + > +Note: CTI connections are SOC specific and hence the above script is > +added just for reference. > + > +4. Choose reserved buffer mode for ETR buffer > + #echo "resrv" > /sys/bus/coresight/devices/tmc_etr0/buf_mode_preferred > + > +5. Enable stop on flush trigger configuration > + #echo 1 > /sys/bus/coresight/devices/tmc_etr0/stop_on_flush > + > +6. Start Coresight tracing on cores 1 and 2 using sysfs interface > + > +7. Run some application on core 1 > + #taskset -c 1 dd if=/dev/urandom of=/dev/null & > + > +8. Invoke kernel panic on core 2 > + #echo 1 > /proc/sys/kernel/panic > + #taskset -c 2 echo c > /proc/sysrq-trigger > + > +9. From rebooted kernel or crashdump kernel, read crashdata > + > + #dd if=/dev/crash_tmc_etr0 of=/trace/cstrace.bin > + > +10. Run opencsd decoder tools/scripts to generate the instruction trace. Format all command lines as literal code blocks to be consistent: ---- >8 ---- diff --git a/Documentation/trace/coresight/panic.rst b/Documentation/trace/coresight/panic.rst index 3b53d91cace8fd..864f6c05b3f7af 100644 --- a/Documentation/trace/coresight/panic.rst +++ b/Documentation/trace/coresight/panic.rst @@ -113,7 +113,7 @@ Sample commands for testing a Kernel panic case with ETR sink bootargs. This is mandatory if the user would like to read the tracedata from the crashdump kernel. -2. Enable the preloaded ETM configuration +2. Enable the preloaded ETM configuration:: #echo 1 > /sys/kernel/config/cs-syscfg/configurations/panicstop/enable @@ -176,22 +176,26 @@ Sample commands for testing a Kernel panic case with ETR sink Note: CTI connections are SOC specific and hence the above script is added just for reference. -4. Choose reserved buffer mode for ETR buffer +4. Choose reserved buffer mode for ETR buffer:: + #echo "resrv" > /sys/bus/coresight/devices/tmc_etr0/buf_mode_preferred -5. Enable stop on flush trigger configuration +5. Enable stop on flush trigger configuration:: + #echo 1 > /sys/bus/coresight/devices/tmc_etr0/stop_on_flush 6. Start Coresight tracing on cores 1 and 2 using sysfs interface -7. Run some application on core 1 +7. Run some application on core 1:: + #taskset -c 1 dd if=/dev/urandom of=/dev/null & -8. Invoke kernel panic on core 2 +8. Invoke kernel panic on core 2:: + #echo 1 > /proc/sys/kernel/panic #taskset -c 2 echo c > /proc/sysrq-trigger -9. From rebooted kernel or crashdump kernel, read crashdata +9. From rebooted kernel or crashdump kernel, read crashdata:: #dd if=/dev/crash_tmc_etr0 of=/trace/cstrace.bin Thanks. -- An old man doll... just what I always wanted! - Clara
Hi, On 2024-09-17 at 07:16:46, Bagas Sanjaya (bagasdotme@gmail.com) wrote: > On Mon, Sep 16, 2024 at 04:04:37PM +0530, Linu Cherian wrote: > > +3. On a kernel panic, all coresight blocks are disabled, necessary > > + metadata is synced by kernel panic handler. > "... and necessary metadata ..." > > + > > + System would eventually reboot or boot a crashdump kernel. > > + > > +4. For platforms that supports crashdump kernel, raw trace data can be > > + dumped using the coresight sysfs interface from the crashdump kernel > > + itself. Persistent RAM is not a requirement in this case. > > + > > +5. For platforms that supports persistent RAM, trace data can be dumped > > + using the coresight sysfs interface in the subsequent Linux boot. > > + Crashdump kernel is not a requirement in this case. Persistent RAM > > + ensures that trace data is intact across reboot. > > + > > +Coresight trace during Watchdog reset > > +------------------------------------- > > +The main difference between addressing the watchdog reset and kernel panic > > +case are below, > "... are:" > > +Sample commands for testing a Kernel panic case with ETR sink > > +------------------------------------------------------------- > > + > > +1. Boot Linux kernel with "crash_kexec_post_notifiers" added to the kernel > > + bootargs. This is mandatory if the user would like to read the tracedata > > + from the crashdump kernel. > > + > > +2. Enable the preloaded ETM configuration > > + > > + #echo 1 > /sys/kernel/config/cs-syscfg/configurations/panicstop/enable > > + > > +3. Configure CTI using sysfs interface:: > > + > > + #./cti_setup.sh > > + > > + #cat cti_setup.sh > > + > > + > > + cd /sys/bus/coresight/devices/ > > + > > + ap_cti_config () { > > + #ETM trig out[0] trigger to Channel 0 > > + echo 0 4 > channels/trigin_attach > > + } > > + > > + etf_cti_config () { > > + #ETF Flush in trigger from Channel 0 > > + echo 0 1 > channels/trigout_attach > > + echo 1 > channels/trig_filter_enable > > + } > > + > > + etr_cti_config () { > > + #ETR Flush in from Channel 0 > > + echo 0 1 > channels/trigout_attach > > + echo 1 > channels/trig_filter_enable > > + } > > + > > + ctidevs=`find . -name "cti*"` > > + > > + for i in $ctidevs > > + do > > + cd $i > > + > > + connection=`find . -name "ete*"` > > + if [ ! -z "$connection" ] > > + then > > + echo "AP CTI config for $i" > > + ap_cti_config > > + fi > > + > > + connection=`find . -name "tmc_etf*"` > > + if [ ! -z "$connection" ] > > + then > > + echo "ETF CTI config for $i" > > + etf_cti_config > > + fi > > + > > + connection=`find . -name "tmc_etr*"` > > + if [ ! -z "$connection" ] > > + then > > + echo "ETR CTI config for $i" > > + etr_cti_config > > + fi > > + > > + cd .. > > + done > > + > > +Note: CTI connections are SOC specific and hence the above script is > > +added just for reference. > > + > > +4. Choose reserved buffer mode for ETR buffer > > + #echo "resrv" > /sys/bus/coresight/devices/tmc_etr0/buf_mode_preferred > > + > > +5. Enable stop on flush trigger configuration > > + #echo 1 > /sys/bus/coresight/devices/tmc_etr0/stop_on_flush > > + > > +6. Start Coresight tracing on cores 1 and 2 using sysfs interface > > + > > +7. Run some application on core 1 > > + #taskset -c 1 dd if=/dev/urandom of=/dev/null & > > + > > +8. Invoke kernel panic on core 2 > > + #echo 1 > /proc/sys/kernel/panic > > + #taskset -c 2 echo c > /proc/sysrq-trigger > > + > > +9. From rebooted kernel or crashdump kernel, read crashdata > > + > > + #dd if=/dev/crash_tmc_etr0 of=/trace/cstrace.bin > > + > > +10. Run opencsd decoder tools/scripts to generate the instruction trace. > > Format all command lines as literal code blocks to be consistent: > > ---- >8 ---- > diff --git a/Documentation/trace/coresight/panic.rst b/Documentation/trace/coresight/panic.rst > index 3b53d91cace8fd..864f6c05b3f7af 100644 > --- a/Documentation/trace/coresight/panic.rst > +++ b/Documentation/trace/coresight/panic.rst > @@ -113,7 +113,7 @@ Sample commands for testing a Kernel panic case with ETR sink > bootargs. This is mandatory if the user would like to read the tracedata > from the crashdump kernel. > > -2. Enable the preloaded ETM configuration > +2. Enable the preloaded ETM configuration:: > > #echo 1 > /sys/kernel/config/cs-syscfg/configurations/panicstop/enable > > @@ -176,22 +176,26 @@ Sample commands for testing a Kernel panic case with ETR sink > Note: CTI connections are SOC specific and hence the above script is > added just for reference. > > -4. Choose reserved buffer mode for ETR buffer > +4. Choose reserved buffer mode for ETR buffer:: > + > #echo "resrv" > /sys/bus/coresight/devices/tmc_etr0/buf_mode_preferred > > -5. Enable stop on flush trigger configuration > +5. Enable stop on flush trigger configuration:: > + > #echo 1 > /sys/bus/coresight/devices/tmc_etr0/stop_on_flush > > 6. Start Coresight tracing on cores 1 and 2 using sysfs interface > > -7. Run some application on core 1 > +7. Run some application on core 1:: > + > #taskset -c 1 dd if=/dev/urandom of=/dev/null & > > -8. Invoke kernel panic on core 2 > +8. Invoke kernel panic on core 2:: > + > #echo 1 > /proc/sys/kernel/panic > #taskset -c 2 echo c > /proc/sysrq-trigger > > -9. From rebooted kernel or crashdump kernel, read crashdata > +9. From rebooted kernel or crashdump kernel, read crashdata:: > > #dd if=/dev/crash_tmc_etr0 of=/trace/cstrace.bin Ack. > > Thanks. > > -- > An old man doll... just what I always wanted! - Clara Linu Cherian.
© 2016 - 2024 Red Hat, Inc.