Implement `IntoIterator` for `Vec`, `Vec`'s `IntoIter` type, as well as
`Iterator` for `IntoIter`.
`Vec::into_iter` disassembles the `Vec` into its raw parts; additionally,
`IntoIter` keeps track of a separate pointer, which is incremented
correspondingsly as the iterator advances, while the length, or the count
of elements, is decremented.
This also means that `IntoIter` takes the ownership of the backing
buffer and is responsible to drop the remaining elements and free the
backing buffer, if it's dropped.
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
---
rust/kernel/alloc.rs | 1 +
rust/kernel/alloc/kvec.rs | 186 ++++++++++++++++++++++++++++++++++++++
2 files changed, 187 insertions(+)
diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
index bd93140f3094..f2998ad57456 100644
--- a/rust/kernel/alloc.rs
+++ b/rust/kernel/alloc.rs
@@ -19,6 +19,7 @@
pub use self::kbox::KVBox;
pub use self::kbox::VBox;
+pub use self::kvec::IntoIter;
pub use self::kvec::KVVec;
pub use self::kvec::KVec;
pub use self::kvec::VVec;
diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
index 04cc85f7d92c..50e7705e5686 100644
--- a/rust/kernel/alloc/kvec.rs
+++ b/rust/kernel/alloc/kvec.rs
@@ -12,6 +12,8 @@
ops::DerefMut,
ops::Index,
ops::IndexMut,
+ ptr,
+ ptr::NonNull,
slice,
slice::SliceIndex,
};
@@ -581,3 +583,187 @@ fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
+
+impl<'a, T, A> IntoIterator for &'a Vec<T, A>
+where
+ A: Allocator,
+{
+ type Item = &'a T;
+ type IntoIter = slice::Iter<'a, T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.iter()
+ }
+}
+
+impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
+where
+ A: Allocator,
+{
+ type Item = &'a mut T;
+ type IntoIter = slice::IterMut<'a, T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.iter_mut()
+ }
+}
+
+/// An iterator that moves out of a vector.
+///
+/// This `struct` is created by the `into_iter` method on [`Vec`] (provided by the [`IntoIterator`]
+/// trait).
+///
+/// # Examples
+///
+/// ```
+/// let v = kernel::kvec![0, 1, 2]?;
+/// let iter = v.into_iter();
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub struct IntoIter<T, A: Allocator> {
+ ptr: *mut T,
+ buf: NonNull<T>,
+ len: usize,
+ cap: usize,
+ _p: PhantomData<A>,
+}
+
+impl<T, A> IntoIter<T, A>
+where
+ A: Allocator,
+{
+ fn as_raw_mut_slice(&mut self) -> *mut [T] {
+ ptr::slice_from_raw_parts_mut(self.ptr, self.len)
+ }
+}
+
+impl<T, A> Iterator for IntoIter<T, A>
+where
+ A: Allocator,
+{
+ type Item = T;
+
+ /// # Examples
+ ///
+ /// ```
+ /// let v = kernel::kvec![1, 2, 3]?;
+ /// let mut it = v.into_iter();
+ ///
+ /// assert_eq!(it.next(), Some(1));
+ /// assert_eq!(it.next(), Some(2));
+ /// assert_eq!(it.next(), Some(3));
+ /// assert_eq!(it.next(), None);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ fn next(&mut self) -> Option<T> {
+ if self.len == 0 {
+ return None;
+ }
+
+ let ptr = self.ptr;
+ if !Vec::<T, A>::is_zst() {
+ // SAFETY: We can't overflow; `end` is guaranteed to mark the end of the buffer.
+ unsafe { self.ptr = self.ptr.add(1) };
+ } else {
+ // For ZST `ptr` has to stay where it is to remain aligned, so we just reduce `self.len`
+ // by 1.
+ }
+ self.len -= 1;
+
+ // SAFETY: `ptr` is guaranteed to point at a valid element within the buffer.
+ Some(unsafe { ptr.read() })
+ }
+
+ /// # Examples
+ ///
+ /// ```
+ /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
+ /// let mut iter = v.into_iter();
+ /// let size = iter.size_hint().0;
+ ///
+ /// iter.next();
+ /// assert_eq!(iter.size_hint().0, size - 1);
+ ///
+ /// iter.next();
+ /// assert_eq!(iter.size_hint().0, size - 2);
+ ///
+ /// iter.next();
+ /// assert_eq!(iter.size_hint().0, size - 3);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (self.len, Some(self.len))
+ }
+}
+
+impl<T, A> Drop for IntoIter<T, A>
+where
+ A: Allocator,
+{
+ fn drop(&mut self) {
+ // SAFETY: Drop the remaining vector's elements in place, before we free the backing
+ // memory.
+ unsafe { ptr::drop_in_place(self.as_raw_mut_slice()) };
+
+ // If `cap == 0` we never allocated any memory in the first place.
+ if self.cap != 0 {
+ // SAFETY: `self.buf` was previously allocated with `A`.
+ unsafe { A::free(self.buf.cast()) };
+ }
+ }
+}
+
+impl<T, A> IntoIterator for Vec<T, A>
+where
+ A: Allocator,
+{
+ type Item = T;
+ type IntoIter = IntoIter<T, A>;
+
+ /// Creates a consuming iterator, that is, one that moves each value out of
+ /// the vector (from start to end). The vector cannot be used after calling
+ /// this.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = kernel::kvec![1, 2]?;
+ /// let mut v_iter = v.into_iter();
+ ///
+ /// let first_element: Option<u32> = v_iter.next();
+ ///
+ /// assert_eq!(first_element, Some(1));
+ /// assert_eq!(v_iter.next(), Some(2));
+ /// assert_eq!(v_iter.next(), None);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ ///
+ /// ```
+ /// let v = kernel::kvec![];
+ /// let mut v_iter = v.into_iter();
+ ///
+ /// let first_element: Option<u32> = v_iter.next();
+ ///
+ /// assert_eq!(first_element, None);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ #[inline]
+ fn into_iter(self) -> Self::IntoIter {
+ let (ptr, len, cap) = self.into_raw_parts();
+
+ IntoIter {
+ ptr,
+ // SAFETY: `ptr` is either a dangling pointer or a pointer to a valid memory
+ // allocation, allocated with `A`.
+ buf: unsafe { NonNull::new_unchecked(ptr) },
+ len,
+ cap,
+ _p: PhantomData::<A>,
+ }
+ }
+}
--
2.45.2
On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote:
>
> Implement `IntoIterator` for `Vec`, `Vec`'s `IntoIter` type, as well as
> `Iterator` for `IntoIter`.
>
> `Vec::into_iter` disassembles the `Vec` into its raw parts; additionally,
> `IntoIter` keeps track of a separate pointer, which is incremented
> correspondingsly as the iterator advances, while the length, or the count
> of elements, is decremented.
>
> This also means that `IntoIter` takes the ownership of the backing
> buffer and is responsible to drop the remaining elements and free the
> backing buffer, if it's dropped.
>
> Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> ---
> rust/kernel/alloc.rs | 1 +
> rust/kernel/alloc/kvec.rs | 186 ++++++++++++++++++++++++++++++++++++++
> 2 files changed, 187 insertions(+)
>
> diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> index bd93140f3094..f2998ad57456 100644
> --- a/rust/kernel/alloc.rs
> +++ b/rust/kernel/alloc.rs
> @@ -19,6 +19,7 @@
> pub use self::kbox::KVBox;
> pub use self::kbox::VBox;
>
> +pub use self::kvec::IntoIter;
> pub use self::kvec::KVVec;
> pub use self::kvec::KVec;
> pub use self::kvec::VVec;
> diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> index 04cc85f7d92c..50e7705e5686 100644
> --- a/rust/kernel/alloc/kvec.rs
> +++ b/rust/kernel/alloc/kvec.rs
> @@ -12,6 +12,8 @@
> ops::DerefMut,
> ops::Index,
> ops::IndexMut,
> + ptr,
> + ptr::NonNull,
> slice,
> slice::SliceIndex,
> };
> @@ -581,3 +583,187 @@ fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
> __impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
> __impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
> __impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
> +
> +impl<'a, T, A> IntoIterator for &'a Vec<T, A>
> +where
> + A: Allocator,
> +{
> + type Item = &'a T;
> + type IntoIter = slice::Iter<'a, T>;
> +
> + fn into_iter(self) -> Self::IntoIter {
> + self.iter()
> + }
> +}
> +
> +impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
> +where
> + A: Allocator,
> +{
> + type Item = &'a mut T;
> + type IntoIter = slice::IterMut<'a, T>;
> +
> + fn into_iter(self) -> Self::IntoIter {
> + self.iter_mut()
> + }
> +}
> +
> +/// An iterator that moves out of a vector.
> +///
> +/// This `struct` is created by the `into_iter` method on [`Vec`] (provided by the [`IntoIterator`]
> +/// trait).
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let v = kernel::kvec![0, 1, 2]?;
> +/// let iter = v.into_iter();
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub struct IntoIter<T, A: Allocator> {
> + ptr: *mut T,
> + buf: NonNull<T>,
> + len: usize,
> + cap: usize,
> + _p: PhantomData<A>,
> +}
> +
> +impl<T, A> IntoIter<T, A>
> +where
> + A: Allocator,
> +{
> + fn as_raw_mut_slice(&mut self) -> *mut [T] {
> + ptr::slice_from_raw_parts_mut(self.ptr, self.len)
> + }
> +}
> +
> +impl<T, A> Iterator for IntoIter<T, A>
> +where
> + A: Allocator,
> +{
> + type Item = T;
> +
> + /// # Examples
> + ///
> + /// ```
> + /// let v = kernel::kvec![1, 2, 3]?;
> + /// let mut it = v.into_iter();
> + ///
> + /// assert_eq!(it.next(), Some(1));
> + /// assert_eq!(it.next(), Some(2));
> + /// assert_eq!(it.next(), Some(3));
> + /// assert_eq!(it.next(), None);
> + ///
> + /// # Ok::<(), Error>(())
> + /// ```
> + fn next(&mut self) -> Option<T> {
> + if self.len == 0 {
> + return None;
> + }
> +
> + let ptr = self.ptr;
> + if !Vec::<T, A>::is_zst() {
> + // SAFETY: We can't overflow; `end` is guaranteed to mark the end of the buffer.
> + unsafe { self.ptr = self.ptr.add(1) };
> + } else {
> + // For ZST `ptr` has to stay where it is to remain aligned, so we just reduce `self.len`
> + // by 1.
> + }
> + self.len -= 1;
> +
> + // SAFETY: `ptr` is guaranteed to point at a valid element within the buffer.
> + Some(unsafe { ptr.read() })
> + }
> +
> + /// # Examples
> + ///
> + /// ```
> + /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
> + /// let mut iter = v.into_iter();
> + /// let size = iter.size_hint().0;
> + ///
> + /// iter.next();
> + /// assert_eq!(iter.size_hint().0, size - 1);
> + ///
> + /// iter.next();
> + /// assert_eq!(iter.size_hint().0, size - 2);
> + ///
> + /// iter.next();
> + /// assert_eq!(iter.size_hint().0, size - 3);
> + ///
> + /// # Ok::<(), Error>(())
> + /// ```
> + fn size_hint(&self) -> (usize, Option<usize>) {
> + (self.len, Some(self.len))
> + }
> +}
> +
> +impl<T, A> Drop for IntoIter<T, A>
> +where
> + A: Allocator,
> +{
> + fn drop(&mut self) {
> + // SAFETY: Drop the remaining vector's elements in place, before we free the backing
> + // memory.
> + unsafe { ptr::drop_in_place(self.as_raw_mut_slice()) };
> +
> + // If `cap == 0` we never allocated any memory in the first place.
> + if self.cap != 0 {
> + // SAFETY: `self.buf` was previously allocated with `A`.
> + unsafe { A::free(self.buf.cast()) };
> + }
Is this ok for ZST?
> + }
> +}
> +
> +impl<T, A> IntoIterator for Vec<T, A>
> +where
> + A: Allocator,
> +{
> + type Item = T;
> + type IntoIter = IntoIter<T, A>;
> +
> + /// Creates a consuming iterator, that is, one that moves each value out of
> + /// the vector (from start to end). The vector cannot be used after calling
> + /// this.
> + ///
> + /// # Examples
> + ///
> + /// ```
> + /// let v = kernel::kvec![1, 2]?;
> + /// let mut v_iter = v.into_iter();
> + ///
> + /// let first_element: Option<u32> = v_iter.next();
> + ///
> + /// assert_eq!(first_element, Some(1));
> + /// assert_eq!(v_iter.next(), Some(2));
> + /// assert_eq!(v_iter.next(), None);
> + ///
> + /// # Ok::<(), Error>(())
> + /// ```
> + ///
> + /// ```
> + /// let v = kernel::kvec![];
> + /// let mut v_iter = v.into_iter();
> + ///
> + /// let first_element: Option<u32> = v_iter.next();
> + ///
> + /// assert_eq!(first_element, None);
> + ///
> + /// # Ok::<(), Error>(())
> + /// ```
> + #[inline]
> + fn into_iter(self) -> Self::IntoIter {
> + let (ptr, len, cap) = self.into_raw_parts();
> +
> + IntoIter {
> + ptr,
> + // SAFETY: `ptr` is either a dangling pointer or a pointer to a valid memory
> + // allocation, allocated with `A`.
> + buf: unsafe { NonNull::new_unchecked(ptr) },
> + len,
> + cap,
> + _p: PhantomData::<A>,
> + }
> + }
> +}
> --
> 2.45.2
>
On Thu, Aug 01, 2024 at 05:07:48PM +0200, Alice Ryhl wrote:
> On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote:
> >
> > Implement `IntoIterator` for `Vec`, `Vec`'s `IntoIter` type, as well as
> > `Iterator` for `IntoIter`.
> >
> > `Vec::into_iter` disassembles the `Vec` into its raw parts; additionally,
> > `IntoIter` keeps track of a separate pointer, which is incremented
> > correspondingsly as the iterator advances, while the length, or the count
> > of elements, is decremented.
> >
> > This also means that `IntoIter` takes the ownership of the backing
> > buffer and is responsible to drop the remaining elements and free the
> > backing buffer, if it's dropped.
> >
> > Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> > ---
> > rust/kernel/alloc.rs | 1 +
> > rust/kernel/alloc/kvec.rs | 186 ++++++++++++++++++++++++++++++++++++++
> > 2 files changed, 187 insertions(+)
> >
> > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> > index bd93140f3094..f2998ad57456 100644
> > --- a/rust/kernel/alloc.rs
> > +++ b/rust/kernel/alloc.rs
> > @@ -19,6 +19,7 @@
> > pub use self::kbox::KVBox;
> > pub use self::kbox::VBox;
> >
> > +pub use self::kvec::IntoIter;
> > pub use self::kvec::KVVec;
> > pub use self::kvec::KVec;
> > pub use self::kvec::VVec;
> > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> > index 04cc85f7d92c..50e7705e5686 100644
> > --- a/rust/kernel/alloc/kvec.rs
> > +++ b/rust/kernel/alloc/kvec.rs
> > @@ -12,6 +12,8 @@
> > ops::DerefMut,
> > ops::Index,
> > ops::IndexMut,
> > + ptr,
> > + ptr::NonNull,
> > slice,
> > slice::SliceIndex,
> > };
> > @@ -581,3 +583,187 @@ fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
> > __impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
> > __impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
> > __impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
> > +
> > +impl<'a, T, A> IntoIterator for &'a Vec<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + type Item = &'a T;
> > + type IntoIter = slice::Iter<'a, T>;
> > +
> > + fn into_iter(self) -> Self::IntoIter {
> > + self.iter()
> > + }
> > +}
> > +
> > +impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + type Item = &'a mut T;
> > + type IntoIter = slice::IterMut<'a, T>;
> > +
> > + fn into_iter(self) -> Self::IntoIter {
> > + self.iter_mut()
> > + }
> > +}
> > +
> > +/// An iterator that moves out of a vector.
> > +///
> > +/// This `struct` is created by the `into_iter` method on [`Vec`] (provided by the [`IntoIterator`]
> > +/// trait).
> > +///
> > +/// # Examples
> > +///
> > +/// ```
> > +/// let v = kernel::kvec![0, 1, 2]?;
> > +/// let iter = v.into_iter();
> > +///
> > +/// # Ok::<(), Error>(())
> > +/// ```
> > +pub struct IntoIter<T, A: Allocator> {
> > + ptr: *mut T,
> > + buf: NonNull<T>,
> > + len: usize,
> > + cap: usize,
> > + _p: PhantomData<A>,
> > +}
> > +
> > +impl<T, A> IntoIter<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + fn as_raw_mut_slice(&mut self) -> *mut [T] {
> > + ptr::slice_from_raw_parts_mut(self.ptr, self.len)
> > + }
> > +}
> > +
> > +impl<T, A> Iterator for IntoIter<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + type Item = T;
> > +
> > + /// # Examples
> > + ///
> > + /// ```
> > + /// let v = kernel::kvec![1, 2, 3]?;
> > + /// let mut it = v.into_iter();
> > + ///
> > + /// assert_eq!(it.next(), Some(1));
> > + /// assert_eq!(it.next(), Some(2));
> > + /// assert_eq!(it.next(), Some(3));
> > + /// assert_eq!(it.next(), None);
> > + ///
> > + /// # Ok::<(), Error>(())
> > + /// ```
> > + fn next(&mut self) -> Option<T> {
> > + if self.len == 0 {
> > + return None;
> > + }
> > +
> > + let ptr = self.ptr;
> > + if !Vec::<T, A>::is_zst() {
> > + // SAFETY: We can't overflow; `end` is guaranteed to mark the end of the buffer.
> > + unsafe { self.ptr = self.ptr.add(1) };
> > + } else {
> > + // For ZST `ptr` has to stay where it is to remain aligned, so we just reduce `self.len`
> > + // by 1.
> > + }
> > + self.len -= 1;
> > +
> > + // SAFETY: `ptr` is guaranteed to point at a valid element within the buffer.
> > + Some(unsafe { ptr.read() })
> > + }
> > +
> > + /// # Examples
> > + ///
> > + /// ```
> > + /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
> > + /// let mut iter = v.into_iter();
> > + /// let size = iter.size_hint().0;
> > + ///
> > + /// iter.next();
> > + /// assert_eq!(iter.size_hint().0, size - 1);
> > + ///
> > + /// iter.next();
> > + /// assert_eq!(iter.size_hint().0, size - 2);
> > + ///
> > + /// iter.next();
> > + /// assert_eq!(iter.size_hint().0, size - 3);
> > + ///
> > + /// # Ok::<(), Error>(())
> > + /// ```
> > + fn size_hint(&self) -> (usize, Option<usize>) {
> > + (self.len, Some(self.len))
> > + }
> > +}
> > +
> > +impl<T, A> Drop for IntoIter<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + fn drop(&mut self) {
> > + // SAFETY: Drop the remaining vector's elements in place, before we free the backing
> > + // memory.
> > + unsafe { ptr::drop_in_place(self.as_raw_mut_slice()) };
> > +
> > + // If `cap == 0` we never allocated any memory in the first place.
> > + if self.cap != 0 {
> > + // SAFETY: `self.buf` was previously allocated with `A`.
> > + unsafe { A::free(self.buf.cast()) };
> > + }
>
> Is this ok for ZST?
Yes, for ZST `self.cap` is always zero.
>
> > + }
> > +}
> > +
> > +impl<T, A> IntoIterator for Vec<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + type Item = T;
> > + type IntoIter = IntoIter<T, A>;
> > +
> > + /// Creates a consuming iterator, that is, one that moves each value out of
> > + /// the vector (from start to end). The vector cannot be used after calling
> > + /// this.
> > + ///
> > + /// # Examples
> > + ///
> > + /// ```
> > + /// let v = kernel::kvec![1, 2]?;
> > + /// let mut v_iter = v.into_iter();
> > + ///
> > + /// let first_element: Option<u32> = v_iter.next();
> > + ///
> > + /// assert_eq!(first_element, Some(1));
> > + /// assert_eq!(v_iter.next(), Some(2));
> > + /// assert_eq!(v_iter.next(), None);
> > + ///
> > + /// # Ok::<(), Error>(())
> > + /// ```
> > + ///
> > + /// ```
> > + /// let v = kernel::kvec![];
> > + /// let mut v_iter = v.into_iter();
> > + ///
> > + /// let first_element: Option<u32> = v_iter.next();
> > + ///
> > + /// assert_eq!(first_element, None);
> > + ///
> > + /// # Ok::<(), Error>(())
> > + /// ```
> > + #[inline]
> > + fn into_iter(self) -> Self::IntoIter {
> > + let (ptr, len, cap) = self.into_raw_parts();
> > +
> > + IntoIter {
> > + ptr,
> > + // SAFETY: `ptr` is either a dangling pointer or a pointer to a valid memory
> > + // allocation, allocated with `A`.
> > + buf: unsafe { NonNull::new_unchecked(ptr) },
> > + len,
> > + cap,
> > + _p: PhantomData::<A>,
> > + }
> > + }
> > +}
> > --
> > 2.45.2
> >
>
© 2016 - 2026 Red Hat, Inc.