`Vec` provides a contiguous growable array type (such as `Vec`) with
contents allocated with the kernel's allocators (e.g. `Kmalloc`,
`Vmalloc` or `KVmalloc`).
In contrast to Rust's `Vec` type, the kernel `Vec` type considers the
kernel's GFP flags for all appropriate functions, always reports
allocation failures through `Result<_, AllocError>` and remains
independent from unstable features.
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
---
rust/kernel/alloc.rs | 6 +
rust/kernel/alloc/kbox.rs | 16 +-
rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++
rust/kernel/prelude.rs | 2 +-
4 files changed, 605 insertions(+), 2 deletions(-)
create mode 100644 rust/kernel/alloc/kvec.rs
diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
index 4bddd023aa7f..bd93140f3094 100644
--- a/rust/kernel/alloc.rs
+++ b/rust/kernel/alloc.rs
@@ -5,6 +5,7 @@
#[cfg(not(any(test, testlib)))]
pub mod allocator;
pub mod kbox;
+pub mod kvec;
pub mod vec_ext;
#[cfg(any(test, testlib))]
@@ -18,6 +19,11 @@
pub use self::kbox::KVBox;
pub use self::kbox::VBox;
+pub use self::kvec::KVVec;
+pub use self::kvec::KVec;
+pub use self::kvec::VVec;
+pub use self::kvec::Vec;
+
/// Indicates an allocation error.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct AllocError;
diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
index 7074f00e07bc..39feaed4a8f8 100644
--- a/rust/kernel/alloc/kbox.rs
+++ b/rust/kernel/alloc/kbox.rs
@@ -2,7 +2,7 @@
//! Implementation of [`Box`].
-use super::{AllocError, Allocator, Flags};
+use super::{AllocError, Allocator, Flags, Vec};
use core::fmt;
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
@@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self>
}
}
+impl<T, A, const N: usize> Box<[T; N], A>
+where
+ A: Allocator,
+{
+ /// Convert a `Box<[T], A>` to a `Vec<T, A>`.
+ pub fn into_vec(b: Self) -> Vec<T, A> {
+ let len = b.len();
+ unsafe {
+ let ptr = Self::into_raw(b);
+ Vec::from_raw_parts(ptr as _, len, len)
+ }
+ }
+}
+
impl<T, A> Box<MaybeUninit<T>, A>
where
A: Allocator,
diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
new file mode 100644
index 000000000000..04cc85f7d92c
--- /dev/null
+++ b/rust/kernel/alloc/kvec.rs
@@ -0,0 +1,583 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Implementation of [`Vec`].
+
+use super::{AllocError, Allocator, Flags};
+use crate::types::Unique;
+use core::{
+ fmt,
+ marker::PhantomData,
+ mem::{ManuallyDrop, MaybeUninit},
+ ops::Deref,
+ ops::DerefMut,
+ ops::Index,
+ ops::IndexMut,
+ slice,
+ slice::SliceIndex,
+};
+
+/// Create a [`Vec`] containing the arguments.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = kernel::kvec![];
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(v, [1]);
+///
+/// let mut v = kernel::kvec![1; 3]?;
+/// v.push(4, GFP_KERNEL)?;
+/// assert_eq!(v, [1, 1, 1, 4]);
+///
+/// let mut v = kernel::kvec![1, 2, 3]?;
+/// v.push(4, GFP_KERNEL)?;
+/// assert_eq!(v, [1, 2, 3, 4]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+#[macro_export]
+macro_rules! kvec {
+ () => (
+ {
+ $crate::alloc::KVec::new()
+ }
+ );
+ ($elem:expr; $n:expr) => (
+ {
+ $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
+ }
+ );
+ ($($x:expr),+ $(,)?) => (
+ {
+ match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) {
+ Ok(b) => Ok($crate::alloc::KBox::into_vec(b)),
+ Err(e) => Err(e),
+ }
+ }
+ );
+}
+
+/// The kernel's [`Vec`] type.
+///
+/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
+/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`.
+///
+/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
+/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist.
+///
+/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
+///
+/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
+/// capacity of the vector (the number of elements that currently fit into the vector), it's length
+/// (the number of elements that are currently stored in the vector) and the `Allocator` used to
+/// allocate (and free) the backing buffer.
+///
+/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
+/// and manually modified.
+///
+/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
+/// are added to the vector.
+///
+/// # Invariants
+///
+/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory
+/// allocated with `A` or, for zero-sized types, is a dangling pointer.
+///
+/// The length of the vector always represents the exact number of elements stored in the vector.
+///
+/// The capacity of the vector always represents the absolute number of elements that can be stored
+/// within the vector without re-allocation. However, it is legal for the backing buffer to be
+/// larger than `size_of<T>` times the capacity.
+///
+/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and
+/// must be freed with).
+pub struct Vec<T, A: Allocator> {
+ ptr: Unique<T>,
+ /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
+ ///
+ /// # Safety
+ ///
+ /// `cap` must be in the `0..=isize::MAX` range.
+ cap: usize,
+ len: usize,
+ _p: PhantomData<A>,
+}
+
+/// Type alias for `Vec` with a `Kmalloc` allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = KVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type KVec<T> = Vec<T, super::allocator::Kmalloc>;
+
+/// Type alias for `Vec` with a `Vmalloc` allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = VVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type VVec<T> = Vec<T, super::allocator::Vmalloc>;
+
+/// Type alias for `Vec` with a `KVmalloc` allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = KVVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>;
+
+impl<T, A> Vec<T, A>
+where
+ A: Allocator,
+{
+ #[inline]
+ fn is_zst() -> bool {
+ core::mem::size_of::<T>() == 0
+ }
+
+ /// Returns the total number of elements the vector can hold without
+ /// reallocating.
+ pub fn capacity(&self) -> usize {
+ if Self::is_zst() {
+ usize::MAX
+ } else {
+ self.cap
+ }
+ }
+
+ /// Returns the number of elements in the vector, also referred to
+ /// as its 'length'.
+ #[inline]
+ pub fn len(&self) -> usize {
+ self.len
+ }
+
+ /// Forces the length of the vector to new_len.
+ ///
+ /// # Safety
+ ///
+ /// - `new_len` must be less than or equal to [`Self::capacity()`].
+ /// - The elements at `old_len..new_len` must be initialized.
+ #[inline]
+ pub unsafe fn set_len(&mut self, new_len: usize) {
+ self.len = new_len;
+ }
+
+ /// Extracts a slice containing the entire vector.
+ ///
+ /// Equivalent to `&s[..]`.
+ #[inline]
+ pub fn as_slice(&self) -> &[T] {
+ self
+ }
+
+ /// Extracts a mutable slice of the entire vector.
+ ///
+ /// Equivalent to `&mut s[..]`.
+ #[inline]
+ pub fn as_mut_slice(&mut self) -> &mut [T] {
+ self
+ }
+
+ /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
+ /// raw pointer valid for zero sized reads if the vector didn't allocate.
+ #[inline]
+ pub fn as_mut_ptr(&self) -> *mut T {
+ self.ptr.as_ptr()
+ }
+
+ /// Returns a raw pointer to the slice's buffer.
+ #[inline]
+ pub fn as_ptr(&self) -> *const T {
+ self.as_mut_ptr()
+ }
+
+ /// Returns `true` if the vector contains no elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::new();
+ /// assert!(v.is_empty());
+ ///
+ /// v.push(1, GFP_KERNEL);
+ /// assert!(!v.is_empty());
+ /// ```
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Constructs a new, empty Vec<T, A>.
+ ///
+ /// This method does not allocate by itself.
+ #[inline]
+ pub const fn new() -> Self {
+ Self {
+ ptr: Unique::dangling(),
+ cap: 0,
+ len: 0,
+ _p: PhantomData::<A>,
+ }
+ }
+
+ /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`.
+ pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
+ // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
+ // and valid, but uninitialized.
+ unsafe {
+ slice::from_raw_parts_mut(
+ self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
+ self.capacity() - self.len,
+ )
+ }
+ }
+
+ /// Appends an element to the back of the [`Vec`] instance.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::new();
+ /// v.push(1, GFP_KERNEL)?;
+ /// assert_eq!(&v, &[1]);
+ ///
+ /// v.push(2, GFP_KERNEL)?;
+ /// assert_eq!(&v, &[1, 2]);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
+ Vec::reserve(self, 1, flags)?;
+ let s = self.spare_capacity_mut();
+ s[0].write(v);
+
+ // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
+ // by 1. We also know that the new length is <= capacity because of the previous call to
+ // `reserve` above.
+ unsafe { self.set_len(self.len() + 1) };
+ Ok(())
+ }
+
+ /// Creates a new [`Vec`] instance with at least the given capacity.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
+ ///
+ /// assert!(v.capacity() >= 20);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
+ let mut v = Vec::new();
+
+ Self::reserve(&mut v, capacity, flags)?;
+
+ Ok(v)
+ }
+
+ /// Pushes clones of the elements of slice into the [`Vec`] instance.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::new();
+ /// v.push(1, GFP_KERNEL)?;
+ ///
+ /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
+ /// assert_eq!(&v, &[1, 20, 30, 40]);
+ ///
+ /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
+ /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
+ where
+ T: Clone,
+ {
+ self.reserve(other.len(), flags)?;
+ for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
+ slot.write(item.clone());
+ }
+
+ // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
+ // the length by the same amount. We also know that the new length is <= capacity because
+ // of the previous call to `reserve` above.
+ unsafe { self.set_len(self.len() + other.len()) };
+ Ok(())
+ }
+
+ /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator.
+ ///
+ /// # Safety
+ ///
+ /// This is highly unsafe, due to the number of invariants that aren’t checked:
+ ///
+ /// - `ptr` must be currently allocated via the given allocator `A`.
+ /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less
+ /// strict alignment is not sufficient, the alignment really needs to be equal to satisfy the
+ /// `dealloc` requirement that memory must be allocated and deallocated with the same layout.)
+ /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be
+ /// smaller or equal the size the pointer was allocated with.
+ /// - `length` needs to be less than or equal to `capacity`.
+ /// - The first `length` values must be properly initialized values of type `T`.
+ /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety
+ /// documentation of `pointer::offset`.
+ ///
+ /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
+ /// `cap` and `len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = kernel::kvec![1, 2, 3]?;
+ /// v.reserve(1, GFP_KERNEL)?;
+ ///
+ /// let (mut ptr, mut len, cap) = v.into_raw_parts();
+ ///
+ /// // SAFETY: We've just reserved memory for another element.
+ /// unsafe { ptr.add(len).write(4) };
+ /// len += 1;
+ ///
+ /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
+ /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
+ /// // from the exact same raw parts.
+ /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
+ ///
+ /// assert_eq!(v, [1, 2, 3, 4]);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
+ let cap = if Self::is_zst() { 0 } else { capacity };
+
+ Self {
+ // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
+ // memory allocation, allocated with `A`.
+ ptr: unsafe { Unique::new_unchecked(ptr) },
+ cap,
+ len: length,
+ _p: PhantomData::<A>,
+ }
+ }
+
+ /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`).
+ pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
+ let me = ManuallyDrop::new(self);
+ let len = me.len();
+ let capacity = me.capacity();
+ let ptr = me.as_mut_ptr();
+ (ptr, len, capacity)
+ }
+
+ /// Ensures that the capacity exceeds the length by at least `additional` elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::new();
+ /// v.push(1, GFP_KERNEL)?;
+ ///
+ /// v.reserve(10, GFP_KERNEL)?;
+ /// let cap = v.capacity();
+ /// assert!(cap >= 10);
+ ///
+ /// v.reserve(10, GFP_KERNEL)?;
+ /// let new_cap = v.capacity();
+ /// assert_eq!(new_cap, cap);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
+ let len = self.len();
+ let cap = self.capacity();
+
+ if cap - len >= additional {
+ return Ok(());
+ }
+
+ if Self::is_zst() {
+ // The capacity is already `usize::MAX` for SZTs, we can't go higher.
+ return Err(AllocError);
+ }
+
+ // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
+ // is greater than `isize::MAX`. So the multiplication by two won't overflow.
+ let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
+ let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
+
+ // We need to make sure that `ptr` is either NULL or comes from a previous call to
+ // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
+ // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
+ // capacity to be zero if no memory has been allocated yet.
+ let ptr = if cap == 0 {
+ None
+ } else {
+ Some(self.ptr.as_non_null().cast())
+ };
+
+ // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
+ // `A::realloc`. We also verified that the type is not a ZST.
+ let ptr = unsafe { A::realloc(ptr, layout, flags)? };
+
+ self.ptr = ptr.cast().into();
+ self.cap = new_cap;
+
+ Ok(())
+ }
+}
+
+impl<T: Clone, A: Allocator> Vec<T, A> {
+ /// Extend the vector by `n` clones of value.
+ pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
+ self.reserve(n, flags)?;
+
+ let spare = self.spare_capacity_mut();
+
+ for i in 0..spare.len() - 1 {
+ spare[i].write(value.clone());
+ }
+
+ // We can write the last element directly without cloning needlessly
+ spare[spare.len() - 1].write(value);
+
+ // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not
+ // exceeding the capacity of this `Vec`.
+ unsafe { self.set_len(self.len() + n) };
+
+ Ok(())
+ }
+
+ /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
+ pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
+ let mut v = Self::with_capacity(n, flags)?;
+
+ v.extend_with(n, value, flags)?;
+
+ Ok(v)
+ }
+}
+
+impl<T, A> Drop for Vec<T, A>
+where
+ A: Allocator,
+{
+ fn drop(&mut self) {
+ // SAFETY: We need to drop the vector's elements in place, before we free the backing
+ // memory.
+ unsafe {
+ core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
+ self.as_mut_ptr(),
+ self.len,
+ ))
+ };
+
+ // If `cap == 0` we never allocated any memory in the first place.
+ if self.cap != 0 {
+ // SAFETY: `self.ptr` was previously allocated with `A`.
+ unsafe { A::free(self.ptr.as_non_null().cast()) };
+ }
+ }
+}
+
+impl<T> Default for KVec<T> {
+ #[inline]
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<T, A> Deref for Vec<T, A>
+where
+ A: Allocator,
+{
+ type Target = [T];
+
+ #[inline]
+ fn deref(&self) -> &[T] {
+ // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
+ // initialized elements of type `T`.
+ unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
+ }
+}
+
+impl<T, A> DerefMut for Vec<T, A>
+where
+ A: Allocator,
+{
+ #[inline]
+ fn deref_mut(&mut self) -> &mut [T] {
+ // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
+ // initialized elements of type `T`.
+ unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
+ }
+}
+
+impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
+
+impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
+where
+ A: Allocator,
+{
+ type Output = I::Output;
+
+ #[inline]
+ fn index(&self, index: I) -> &Self::Output {
+ Index::index(&**self, index)
+ }
+}
+
+impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
+where
+ A: Allocator,
+{
+ #[inline]
+ fn index_mut(&mut self, index: I) -> &mut Self::Output {
+ IndexMut::index_mut(&mut **self, index)
+ }
+}
+
+macro_rules! __impl_slice_eq {
+ ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
+ impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
+ where
+ T: PartialEq<U>,
+ $($ty: $bound)?
+ {
+ #[inline]
+ fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
+ }
+ }
+}
+
+__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
+__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] }
+__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] }
+__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> }
+__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> }
+__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] }
+__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
+__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
+__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
index 6bf77577eae7..bb80a43d20fb 100644
--- a/rust/kernel/prelude.rs
+++ b/rust/kernel/prelude.rs
@@ -14,7 +14,7 @@
#[doc(no_inline)]
pub use core::pin::Pin;
-pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox};
+pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec};
#[doc(no_inline)]
pub use alloc::vec::Vec;
--
2.45.2
On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote:
>
> `Vec` provides a contiguous growable array type (such as `Vec`) with
> contents allocated with the kernel's allocators (e.g. `Kmalloc`,
> `Vmalloc` or `KVmalloc`).
>
> In contrast to Rust's `Vec` type, the kernel `Vec` type considers the
> kernel's GFP flags for all appropriate functions, always reports
> allocation failures through `Result<_, AllocError>` and remains
> independent from unstable features.
>
> Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> ---
> rust/kernel/alloc.rs | 6 +
> rust/kernel/alloc/kbox.rs | 16 +-
> rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++
> rust/kernel/prelude.rs | 2 +-
> 4 files changed, 605 insertions(+), 2 deletions(-)
> create mode 100644 rust/kernel/alloc/kvec.rs
>
> diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> index 4bddd023aa7f..bd93140f3094 100644
> --- a/rust/kernel/alloc.rs
> +++ b/rust/kernel/alloc.rs
> @@ -5,6 +5,7 @@
> #[cfg(not(any(test, testlib)))]
> pub mod allocator;
> pub mod kbox;
> +pub mod kvec;
> pub mod vec_ext;
>
> #[cfg(any(test, testlib))]
> @@ -18,6 +19,11 @@
> pub use self::kbox::KVBox;
> pub use self::kbox::VBox;
>
> +pub use self::kvec::KVVec;
> +pub use self::kvec::KVec;
> +pub use self::kvec::VVec;
> +pub use self::kvec::Vec;
> +
> /// Indicates an allocation error.
> #[derive(Copy, Clone, PartialEq, Eq, Debug)]
> pub struct AllocError;
> diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
> index 7074f00e07bc..39feaed4a8f8 100644
> --- a/rust/kernel/alloc/kbox.rs
> +++ b/rust/kernel/alloc/kbox.rs
> @@ -2,7 +2,7 @@
>
> //! Implementation of [`Box`].
>
> -use super::{AllocError, Allocator, Flags};
> +use super::{AllocError, Allocator, Flags, Vec};
> use core::fmt;
> use core::marker::PhantomData;
> use core::mem::ManuallyDrop;
> @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self>
> }
> }
>
> +impl<T, A, const N: usize> Box<[T; N], A>
> +where
> + A: Allocator,
> +{
> + /// Convert a `Box<[T], A>` to a `Vec<T, A>`.
> + pub fn into_vec(b: Self) -> Vec<T, A> {
This doc-comment seems wrong. [T] and [T; N] are not the same thing.
> + let len = b.len();
> + unsafe {
> + let ptr = Self::into_raw(b);
> + Vec::from_raw_parts(ptr as _, len, len)
> + }
> + }
> +}
> +
> impl<T, A> Box<MaybeUninit<T>, A>
> where
> A: Allocator,
> diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> new file mode 100644
> index 000000000000..04cc85f7d92c
> --- /dev/null
> +++ b/rust/kernel/alloc/kvec.rs
> @@ -0,0 +1,583 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +//! Implementation of [`Vec`].
> +
> +use super::{AllocError, Allocator, Flags};
> +use crate::types::Unique;
> +use core::{
> + fmt,
> + marker::PhantomData,
> + mem::{ManuallyDrop, MaybeUninit},
> + ops::Deref,
> + ops::DerefMut,
> + ops::Index,
> + ops::IndexMut,
> + slice,
> + slice::SliceIndex,
> +};
> +
> +/// Create a [`Vec`] containing the arguments.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = kernel::kvec![];
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(v, [1]);
> +///
> +/// let mut v = kernel::kvec![1; 3]?;
> +/// v.push(4, GFP_KERNEL)?;
> +/// assert_eq!(v, [1, 1, 1, 4]);
> +///
> +/// let mut v = kernel::kvec![1, 2, 3]?;
> +/// v.push(4, GFP_KERNEL)?;
> +/// assert_eq!(v, [1, 2, 3, 4]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +#[macro_export]
> +macro_rules! kvec {
> + () => (
> + {
> + $crate::alloc::KVec::new()
> + }
> + );
> + ($elem:expr; $n:expr) => (
> + {
> + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
> + }
> + );
> + ($($x:expr),+ $(,)?) => (
> + {
> + match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) {
> + Ok(b) => Ok($crate::alloc::KBox::into_vec(b)),
> + Err(e) => Err(e),
> + }
> + }
> + );
> +}
> +
> +/// The kernel's [`Vec`] type.
> +///
> +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
> +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`.
A closing bracket is missing in this sentence.
> +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
> +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist.
> +///
> +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
> +///
> +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
> +/// capacity of the vector (the number of elements that currently fit into the vector), it's length
> +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to
> +/// allocate (and free) the backing buffer.
> +///
> +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
> +/// and manually modified.
> +///
> +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
> +/// are added to the vector.
> +///
> +/// # Invariants
> +///
> +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory
> +/// allocated with `A` or, for zero-sized types, is a dangling pointer.
> +///
> +/// The length of the vector always represents the exact number of elements stored in the vector.
> +///
> +/// The capacity of the vector always represents the absolute number of elements that can be stored
> +/// within the vector without re-allocation. However, it is legal for the backing buffer to be
> +/// larger than `size_of<T>` times the capacity.
> +///
> +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and
> +/// must be freed with).
> +pub struct Vec<T, A: Allocator> {
> + ptr: Unique<T>,
> + /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
> + ///
> + /// # Safety
> + ///
> + /// `cap` must be in the `0..=isize::MAX` range.
> + cap: usize,
This section header should say Invariants, not Safety.
> + len: usize,
> + _p: PhantomData<A>,
> +}
> +
> +/// Type alias for `Vec` with a `Kmalloc` allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = KVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>;
> +
> +/// Type alias for `Vec` with a `Vmalloc` allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = VVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>;
> +
> +/// Type alias for `Vec` with a `KVmalloc` allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = KVVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>;
> +
> +impl<T, A> Vec<T, A>
> +where
> + A: Allocator,
> +{
> + #[inline]
> + fn is_zst() -> bool {
> + core::mem::size_of::<T>() == 0
> + }
> +
> + /// Returns the total number of elements the vector can hold without
> + /// reallocating.
> + pub fn capacity(&self) -> usize {
> + if Self::is_zst() {
> + usize::MAX
> + } else {
> + self.cap
> + }
> + }
I would consider always storing usize::MAX in the capacity field for zst types?
> +
> + /// Returns the number of elements in the vector, also referred to
> + /// as its 'length'.
> + #[inline]
> + pub fn len(&self) -> usize {
> + self.len
> + }
> +
> + /// Forces the length of the vector to new_len.
> + ///
> + /// # Safety
> + ///
> + /// - `new_len` must be less than or equal to [`Self::capacity()`].
> + /// - The elements at `old_len..new_len` must be initialized.
> + #[inline]
> + pub unsafe fn set_len(&mut self, new_len: usize) {
> + self.len = new_len;
> + }
> +
> + /// Extracts a slice containing the entire vector.
> + ///
> + /// Equivalent to `&s[..]`.
> + #[inline]
> + pub fn as_slice(&self) -> &[T] {
> + self
> + }
> +
> + /// Extracts a mutable slice of the entire vector.
> + ///
> + /// Equivalent to `&mut s[..]`.
> + #[inline]
> + pub fn as_mut_slice(&mut self) -> &mut [T] {
> + self
> + }
> +
> + /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
> + /// raw pointer valid for zero sized reads if the vector didn't allocate.
> + #[inline]
> + pub fn as_mut_ptr(&self) -> *mut T {
> + self.ptr.as_ptr()
> + }
> +
> + /// Returns a raw pointer to the slice's buffer.
> + #[inline]
> + pub fn as_ptr(&self) -> *const T {
> + self.as_mut_ptr()
> + }
> +
> + /// Returns `true` if the vector contains no elements.
> + ///
> + /// # Examples
> + ///
> + /// ```
> + /// let mut v = KVec::new();
> + /// assert!(v.is_empty());
> + ///
> + /// v.push(1, GFP_KERNEL);
> + /// assert!(!v.is_empty());
> + /// ```
> + #[inline]
> + pub fn is_empty(&self) -> bool {
> + self.len() == 0
> + }
> +
> + /// Constructs a new, empty Vec<T, A>.
> + ///
> + /// This method does not allocate by itself.
> + #[inline]
> + pub const fn new() -> Self {
> + Self {
> + ptr: Unique::dangling(),
> + cap: 0,
> + len: 0,
> + _p: PhantomData::<A>,
> + }
> + }
> +
> + /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`.
> + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
> + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
> + // and valid, but uninitialized.
> + unsafe {
> + slice::from_raw_parts_mut(
> + self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
> + self.capacity() - self.len,
> + )
> + }
Is this correct for ZSTs?
> + }
> +
> + /// Appends an element to the back of the [`Vec`] instance.
> + ///
> + /// # Examples
> + ///
> + /// ```
> + /// let mut v = KVec::new();
> + /// v.push(1, GFP_KERNEL)?;
> + /// assert_eq!(&v, &[1]);
> + ///
> + /// v.push(2, GFP_KERNEL)?;
> + /// assert_eq!(&v, &[1, 2]);
> + /// # Ok::<(), Error>(())
> + /// ```
> + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
> + Vec::reserve(self, 1, flags)?;
> + let s = self.spare_capacity_mut();
> + s[0].write(v);
> +
> + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
> + // by 1. We also know that the new length is <= capacity because of the previous call to
> + // `reserve` above.
> + unsafe { self.set_len(self.len() + 1) };
> + Ok(())
> + }
> +
> + /// Creates a new [`Vec`] instance with at least the given capacity.
> + ///
> + /// # Examples
> + ///
> + /// ```
> + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
> + ///
> + /// assert!(v.capacity() >= 20);
> + /// # Ok::<(), Error>(())
> + /// ```
> + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
> + let mut v = Vec::new();
> +
> + Self::reserve(&mut v, capacity, flags)?;
> +
> + Ok(v)
> + }
> +
> + /// Pushes clones of the elements of slice into the [`Vec`] instance.
> + ///
> + /// # Examples
> + ///
> + /// ```
> + /// let mut v = KVec::new();
> + /// v.push(1, GFP_KERNEL)?;
> + ///
> + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
> + /// assert_eq!(&v, &[1, 20, 30, 40]);
> + ///
> + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
> + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
> + /// # Ok::<(), Error>(())
> + /// ```
> + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
> + where
> + T: Clone,
> + {
> + self.reserve(other.len(), flags)?;
> + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
> + slot.write(item.clone());
> + }
> +
> + // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
> + // the length by the same amount. We also know that the new length is <= capacity because
> + // of the previous call to `reserve` above.
> + unsafe { self.set_len(self.len() + other.len()) };
> + Ok(())
> + }
> +
> + /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator.
> + ///
> + /// # Safety
> + ///
> + /// This is highly unsafe, due to the number of invariants that aren’t checked:
> + ///
> + /// - `ptr` must be currently allocated via the given allocator `A`.
> + /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less
> + /// strict alignment is not sufficient, the alignment really needs to be equal to satisfy the
> + /// `dealloc` requirement that memory must be allocated and deallocated with the same layout.)
> + /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be
> + /// smaller or equal the size the pointer was allocated with.
> + /// - `length` needs to be less than or equal to `capacity`.
> + /// - The first `length` values must be properly initialized values of type `T`.
> + /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety
> + /// documentation of `pointer::offset`.
> + ///
> + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
> + /// `cap` and `len`.
> + ///
> + /// # Examples
> + ///
> + /// ```
> + /// let mut v = kernel::kvec![1, 2, 3]?;
> + /// v.reserve(1, GFP_KERNEL)?;
> + ///
> + /// let (mut ptr, mut len, cap) = v.into_raw_parts();
> + ///
> + /// // SAFETY: We've just reserved memory for another element.
> + /// unsafe { ptr.add(len).write(4) };
> + /// len += 1;
> + ///
> + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
> + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
> + /// // from the exact same raw parts.
> + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
> + ///
> + /// assert_eq!(v, [1, 2, 3, 4]);
> + ///
> + /// # Ok::<(), Error>(())
> + /// ```
> + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
> + let cap = if Self::is_zst() { 0 } else { capacity };
> +
> + Self {
> + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
> + // memory allocation, allocated with `A`.
> + ptr: unsafe { Unique::new_unchecked(ptr) },
> + cap,
> + len: length,
> + _p: PhantomData::<A>,
> + }
> + }
> +
> + /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`).
> + pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
> + let me = ManuallyDrop::new(self);
> + let len = me.len();
> + let capacity = me.capacity();
> + let ptr = me.as_mut_ptr();
> + (ptr, len, capacity)
> + }
> +
> + /// Ensures that the capacity exceeds the length by at least `additional` elements.
> + ///
> + /// # Examples
> + ///
> + /// ```
> + /// let mut v = KVec::new();
> + /// v.push(1, GFP_KERNEL)?;
> + ///
> + /// v.reserve(10, GFP_KERNEL)?;
> + /// let cap = v.capacity();
> + /// assert!(cap >= 10);
> + ///
> + /// v.reserve(10, GFP_KERNEL)?;
> + /// let new_cap = v.capacity();
> + /// assert_eq!(new_cap, cap);
> + ///
> + /// # Ok::<(), Error>(())
> + /// ```
> + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
> + let len = self.len();
> + let cap = self.capacity();
> +
> + if cap - len >= additional {
> + return Ok(());
> + }
> +
> + if Self::is_zst() {
> + // The capacity is already `usize::MAX` for SZTs, we can't go higher.
> + return Err(AllocError);
> + }
> +
> + // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
> + // is greater than `isize::MAX`. So the multiplication by two won't overflow.
You know it won't overflow because of the type invariants. The thing
about Layout::array should instead be used to argue why setting
self.cap below does not break the invariants.
> + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
> + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
> +
> + // We need to make sure that `ptr` is either NULL or comes from a previous call to
> + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
> + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
> + // capacity to be zero if no memory has been allocated yet.
> + let ptr = if cap == 0 {
> + None
> + } else {
> + Some(self.ptr.as_non_null().cast())
> + };
> +
> + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
> + // `A::realloc`. We also verified that the type is not a ZST.
> + let ptr = unsafe { A::realloc(ptr, layout, flags)? };
> +
> + self.ptr = ptr.cast().into();
> + self.cap = new_cap;
> +
> + Ok(())
> + }
> +}
> +
> +impl<T: Clone, A: Allocator> Vec<T, A> {
> + /// Extend the vector by `n` clones of value.
> + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
> + self.reserve(n, flags)?;
> +
> + let spare = self.spare_capacity_mut();
> +
> + for i in 0..spare.len() - 1 {
> + spare[i].write(value.clone());
> + }
Minus one? Shouldn't this instead loop for `0..n`?
> +
> + // We can write the last element directly without cloning needlessly
> + spare[spare.len() - 1].write(value);
spare[n-1].write(value);
> +
> + // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not
> + // exceeding the capacity of this `Vec`.
> + unsafe { self.set_len(self.len() + n) };
> +
> + Ok(())
> + }
> +
> + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
> + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
> + let mut v = Self::with_capacity(n, flags)?;
> +
> + v.extend_with(n, value, flags)?;
> +
> + Ok(v)
> + }
> +}
> +
> +impl<T, A> Drop for Vec<T, A>
> +where
> + A: Allocator,
> +{
> + fn drop(&mut self) {
> + // SAFETY: We need to drop the vector's elements in place, before we free the backing
> + // memory.
> + unsafe {
> + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
> + self.as_mut_ptr(),
> + self.len,
> + ))
> + };
> +
> + // If `cap == 0` we never allocated any memory in the first place.
> + if self.cap != 0 {
> + // SAFETY: `self.ptr` was previously allocated with `A`.
> + unsafe { A::free(self.ptr.as_non_null().cast()) };
Do you need a ZST check here?
> + }
> + }
> +}
> +
> +impl<T> Default for KVec<T> {
> + #[inline]
> + fn default() -> Self {
> + Self::new()
> + }
> +}
> +
> +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
> + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
> + fmt::Debug::fmt(&**self, f)
> + }
> +}
> +
> +impl<T, A> Deref for Vec<T, A>
> +where
> + A: Allocator,
> +{
> + type Target = [T];
> +
> + #[inline]
> + fn deref(&self) -> &[T] {
> + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> + // initialized elements of type `T`.
> + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
> + }
> +}
> +
> +impl<T, A> DerefMut for Vec<T, A>
> +where
> + A: Allocator,
> +{
> + #[inline]
> + fn deref_mut(&mut self) -> &mut [T] {
> + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> + // initialized elements of type `T`.
> + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
> + }
> +}
> +
> +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
> +
> +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
> +where
> + A: Allocator,
> +{
> + type Output = I::Output;
> +
> + #[inline]
> + fn index(&self, index: I) -> &Self::Output {
> + Index::index(&**self, index)
> + }
> +}
> +
> +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
> +where
> + A: Allocator,
> +{
> + #[inline]
> + fn index_mut(&mut self, index: I) -> &mut Self::Output {
> + IndexMut::index_mut(&mut **self, index)
> + }
> +}
> +
> +macro_rules! __impl_slice_eq {
> + ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
> + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
> + where
> + T: PartialEq<U>,
> + $($ty: $bound)?
> + {
> + #[inline]
> + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
> + }
> + }
> +}
> +
> +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
> +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] }
> +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] }
> +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> }
> +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> }
> +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] }
> +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
> +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
> +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
> diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
> index 6bf77577eae7..bb80a43d20fb 100644
> --- a/rust/kernel/prelude.rs
> +++ b/rust/kernel/prelude.rs
> @@ -14,7 +14,7 @@
> #[doc(no_inline)]
> pub use core::pin::Pin;
>
> -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox};
> +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec};
>
> #[doc(no_inline)]
> pub use alloc::vec::Vec;
> --
> 2.45.2
>
On Thu, Aug 01, 2024 at 05:05:41PM +0200, Alice Ryhl wrote:
> On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote:
> >
> > `Vec` provides a contiguous growable array type (such as `Vec`) with
> > contents allocated with the kernel's allocators (e.g. `Kmalloc`,
> > `Vmalloc` or `KVmalloc`).
> >
> > In contrast to Rust's `Vec` type, the kernel `Vec` type considers the
> > kernel's GFP flags for all appropriate functions, always reports
> > allocation failures through `Result<_, AllocError>` and remains
> > independent from unstable features.
> >
> > Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> > ---
> > rust/kernel/alloc.rs | 6 +
> > rust/kernel/alloc/kbox.rs | 16 +-
> > rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++
> > rust/kernel/prelude.rs | 2 +-
> > 4 files changed, 605 insertions(+), 2 deletions(-)
> > create mode 100644 rust/kernel/alloc/kvec.rs
> >
> > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> > index 4bddd023aa7f..bd93140f3094 100644
> > --- a/rust/kernel/alloc.rs
> > +++ b/rust/kernel/alloc.rs
> > @@ -5,6 +5,7 @@
> > #[cfg(not(any(test, testlib)))]
> > pub mod allocator;
> > pub mod kbox;
> > +pub mod kvec;
> > pub mod vec_ext;
> >
> > #[cfg(any(test, testlib))]
> > @@ -18,6 +19,11 @@
> > pub use self::kbox::KVBox;
> > pub use self::kbox::VBox;
> >
> > +pub use self::kvec::KVVec;
> > +pub use self::kvec::KVec;
> > +pub use self::kvec::VVec;
> > +pub use self::kvec::Vec;
> > +
> > /// Indicates an allocation error.
> > #[derive(Copy, Clone, PartialEq, Eq, Debug)]
> > pub struct AllocError;
> > diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
> > index 7074f00e07bc..39feaed4a8f8 100644
> > --- a/rust/kernel/alloc/kbox.rs
> > +++ b/rust/kernel/alloc/kbox.rs
> > @@ -2,7 +2,7 @@
> >
> > //! Implementation of [`Box`].
> >
> > -use super::{AllocError, Allocator, Flags};
> > +use super::{AllocError, Allocator, Flags, Vec};
> > use core::fmt;
> > use core::marker::PhantomData;
> > use core::mem::ManuallyDrop;
> > @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self>
> > }
> > }
> >
> > +impl<T, A, const N: usize> Box<[T; N], A>
> > +where
> > + A: Allocator,
> > +{
> > + /// Convert a `Box<[T], A>` to a `Vec<T, A>`.
> > + pub fn into_vec(b: Self) -> Vec<T, A> {
>
> This doc-comment seems wrong. [T] and [T; N] are not the same thing.
Indeed, gonna fix.
>
> > + let len = b.len();
> > + unsafe {
> > + let ptr = Self::into_raw(b);
> > + Vec::from_raw_parts(ptr as _, len, len)
> > + }
> > + }
> > +}
> > +
> > impl<T, A> Box<MaybeUninit<T>, A>
> > where
> > A: Allocator,
> > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> > new file mode 100644
> > index 000000000000..04cc85f7d92c
> > --- /dev/null
> > +++ b/rust/kernel/alloc/kvec.rs
> > @@ -0,0 +1,583 @@
> > +// SPDX-License-Identifier: GPL-2.0
> > +
> > +//! Implementation of [`Vec`].
> > +
> > +use super::{AllocError, Allocator, Flags};
> > +use crate::types::Unique;
> > +use core::{
> > + fmt,
> > + marker::PhantomData,
> > + mem::{ManuallyDrop, MaybeUninit},
> > + ops::Deref,
> > + ops::DerefMut,
> > + ops::Index,
> > + ops::IndexMut,
> > + slice,
> > + slice::SliceIndex,
> > +};
> > +
> > +/// Create a [`Vec`] containing the arguments.
> > +///
> > +/// # Examples
> > +///
> > +/// ```
> > +/// let mut v = kernel::kvec![];
> > +/// v.push(1, GFP_KERNEL)?;
> > +/// assert_eq!(v, [1]);
> > +///
> > +/// let mut v = kernel::kvec![1; 3]?;
> > +/// v.push(4, GFP_KERNEL)?;
> > +/// assert_eq!(v, [1, 1, 1, 4]);
> > +///
> > +/// let mut v = kernel::kvec![1, 2, 3]?;
> > +/// v.push(4, GFP_KERNEL)?;
> > +/// assert_eq!(v, [1, 2, 3, 4]);
> > +///
> > +/// # Ok::<(), Error>(())
> > +/// ```
> > +#[macro_export]
> > +macro_rules! kvec {
> > + () => (
> > + {
> > + $crate::alloc::KVec::new()
> > + }
> > + );
> > + ($elem:expr; $n:expr) => (
> > + {
> > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
> > + }
> > + );
> > + ($($x:expr),+ $(,)?) => (
> > + {
> > + match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) {
> > + Ok(b) => Ok($crate::alloc::KBox::into_vec(b)),
> > + Err(e) => Err(e),
> > + }
> > + }
> > + );
> > +}
> > +
> > +/// The kernel's [`Vec`] type.
> > +///
> > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
> > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`.
>
> A closing bracket is missing in this sentence.
Gonna fix.
>
> > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
> > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist.
> > +///
> > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
> > +///
> > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
> > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length
> > +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to
> > +/// allocate (and free) the backing buffer.
> > +///
> > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
> > +/// and manually modified.
> > +///
> > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
> > +/// are added to the vector.
> > +///
> > +/// # Invariants
> > +///
> > +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory
> > +/// allocated with `A` or, for zero-sized types, is a dangling pointer.
> > +///
> > +/// The length of the vector always represents the exact number of elements stored in the vector.
> > +///
> > +/// The capacity of the vector always represents the absolute number of elements that can be stored
> > +/// within the vector without re-allocation. However, it is legal for the backing buffer to be
> > +/// larger than `size_of<T>` times the capacity.
> > +///
> > +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and
> > +/// must be freed with).
> > +pub struct Vec<T, A: Allocator> {
> > + ptr: Unique<T>,
> > + /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
> > + ///
> > + /// # Safety
> > + ///
> > + /// `cap` must be in the `0..=isize::MAX` range.
> > + cap: usize,
>
> This section header should say Invariants, not Safety.
Agreed.
>
> > + len: usize,
> > + _p: PhantomData<A>,
> > +}
> > +
> > +/// Type alias for `Vec` with a `Kmalloc` allocator.
> > +///
> > +/// # Examples
> > +///
> > +/// ```
> > +/// let mut v = KVec::new();
> > +/// v.push(1, GFP_KERNEL)?;
> > +/// assert_eq!(&v, &[1]);
> > +///
> > +/// # Ok::<(), Error>(())
> > +/// ```
> > +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>;
> > +
> > +/// Type alias for `Vec` with a `Vmalloc` allocator.
> > +///
> > +/// # Examples
> > +///
> > +/// ```
> > +/// let mut v = VVec::new();
> > +/// v.push(1, GFP_KERNEL)?;
> > +/// assert_eq!(&v, &[1]);
> > +///
> > +/// # Ok::<(), Error>(())
> > +/// ```
> > +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>;
> > +
> > +/// Type alias for `Vec` with a `KVmalloc` allocator.
> > +///
> > +/// # Examples
> > +///
> > +/// ```
> > +/// let mut v = KVVec::new();
> > +/// v.push(1, GFP_KERNEL)?;
> > +/// assert_eq!(&v, &[1]);
> > +///
> > +/// # Ok::<(), Error>(())
> > +/// ```
> > +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>;
> > +
> > +impl<T, A> Vec<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + #[inline]
> > + fn is_zst() -> bool {
> > + core::mem::size_of::<T>() == 0
> > + }
> > +
> > + /// Returns the total number of elements the vector can hold without
> > + /// reallocating.
> > + pub fn capacity(&self) -> usize {
> > + if Self::is_zst() {
> > + usize::MAX
> > + } else {
> > + self.cap
> > + }
> > + }
>
> I would consider always storing usize::MAX in the capacity field for zst types?
This wouldn't work. `self.cap` is supposed to represent the actual capacity of
the vector, which for ZSTs is zero.
>
> > +
> > + /// Returns the number of elements in the vector, also referred to
> > + /// as its 'length'.
> > + #[inline]
> > + pub fn len(&self) -> usize {
> > + self.len
> > + }
> > +
> > + /// Forces the length of the vector to new_len.
> > + ///
> > + /// # Safety
> > + ///
> > + /// - `new_len` must be less than or equal to [`Self::capacity()`].
> > + /// - The elements at `old_len..new_len` must be initialized.
> > + #[inline]
> > + pub unsafe fn set_len(&mut self, new_len: usize) {
> > + self.len = new_len;
> > + }
> > +
> > + /// Extracts a slice containing the entire vector.
> > + ///
> > + /// Equivalent to `&s[..]`.
> > + #[inline]
> > + pub fn as_slice(&self) -> &[T] {
> > + self
> > + }
> > +
> > + /// Extracts a mutable slice of the entire vector.
> > + ///
> > + /// Equivalent to `&mut s[..]`.
> > + #[inline]
> > + pub fn as_mut_slice(&mut self) -> &mut [T] {
> > + self
> > + }
> > +
> > + /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
> > + /// raw pointer valid for zero sized reads if the vector didn't allocate.
> > + #[inline]
> > + pub fn as_mut_ptr(&self) -> *mut T {
> > + self.ptr.as_ptr()
> > + }
> > +
> > + /// Returns a raw pointer to the slice's buffer.
> > + #[inline]
> > + pub fn as_ptr(&self) -> *const T {
> > + self.as_mut_ptr()
> > + }
> > +
> > + /// Returns `true` if the vector contains no elements.
> > + ///
> > + /// # Examples
> > + ///
> > + /// ```
> > + /// let mut v = KVec::new();
> > + /// assert!(v.is_empty());
> > + ///
> > + /// v.push(1, GFP_KERNEL);
> > + /// assert!(!v.is_empty());
> > + /// ```
> > + #[inline]
> > + pub fn is_empty(&self) -> bool {
> > + self.len() == 0
> > + }
> > +
> > + /// Constructs a new, empty Vec<T, A>.
> > + ///
> > + /// This method does not allocate by itself.
> > + #[inline]
> > + pub const fn new() -> Self {
> > + Self {
> > + ptr: Unique::dangling(),
> > + cap: 0,
> > + len: 0,
> > + _p: PhantomData::<A>,
> > + }
> > + }
> > +
> > + /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`.
> > + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
> > + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
> > + // and valid, but uninitialized.
> > + unsafe {
> > + slice::from_raw_parts_mut(
> > + self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
> > + self.capacity() - self.len,
> > + )
> > + }
>
> Is this correct for ZSTs?
Yes, it gives us a slice of ZSTs with the maximum possible length usize::MAX.
>
> > + }
> > +
> > + /// Appends an element to the back of the [`Vec`] instance.
> > + ///
> > + /// # Examples
> > + ///
> > + /// ```
> > + /// let mut v = KVec::new();
> > + /// v.push(1, GFP_KERNEL)?;
> > + /// assert_eq!(&v, &[1]);
> > + ///
> > + /// v.push(2, GFP_KERNEL)?;
> > + /// assert_eq!(&v, &[1, 2]);
> > + /// # Ok::<(), Error>(())
> > + /// ```
> > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
> > + Vec::reserve(self, 1, flags)?;
> > + let s = self.spare_capacity_mut();
> > + s[0].write(v);
> > +
> > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
> > + // by 1. We also know that the new length is <= capacity because of the previous call to
> > + // `reserve` above.
> > + unsafe { self.set_len(self.len() + 1) };
> > + Ok(())
> > + }
> > +
> > + /// Creates a new [`Vec`] instance with at least the given capacity.
> > + ///
> > + /// # Examples
> > + ///
> > + /// ```
> > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
> > + ///
> > + /// assert!(v.capacity() >= 20);
> > + /// # Ok::<(), Error>(())
> > + /// ```
> > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
> > + let mut v = Vec::new();
> > +
> > + Self::reserve(&mut v, capacity, flags)?;
> > +
> > + Ok(v)
> > + }
> > +
> > + /// Pushes clones of the elements of slice into the [`Vec`] instance.
> > + ///
> > + /// # Examples
> > + ///
> > + /// ```
> > + /// let mut v = KVec::new();
> > + /// v.push(1, GFP_KERNEL)?;
> > + ///
> > + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
> > + /// assert_eq!(&v, &[1, 20, 30, 40]);
> > + ///
> > + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
> > + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
> > + /// # Ok::<(), Error>(())
> > + /// ```
> > + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
> > + where
> > + T: Clone,
> > + {
> > + self.reserve(other.len(), flags)?;
> > + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
> > + slot.write(item.clone());
> > + }
> > +
> > + // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
> > + // the length by the same amount. We also know that the new length is <= capacity because
> > + // of the previous call to `reserve` above.
> > + unsafe { self.set_len(self.len() + other.len()) };
> > + Ok(())
> > + }
> > +
> > + /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator.
> > + ///
> > + /// # Safety
> > + ///
> > + /// This is highly unsafe, due to the number of invariants that aren’t checked:
> > + ///
> > + /// - `ptr` must be currently allocated via the given allocator `A`.
> > + /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less
> > + /// strict alignment is not sufficient, the alignment really needs to be equal to satisfy the
> > + /// `dealloc` requirement that memory must be allocated and deallocated with the same layout.)
> > + /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be
> > + /// smaller or equal the size the pointer was allocated with.
> > + /// - `length` needs to be less than or equal to `capacity`.
> > + /// - The first `length` values must be properly initialized values of type `T`.
> > + /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety
> > + /// documentation of `pointer::offset`.
> > + ///
> > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
> > + /// `cap` and `len`.
> > + ///
> > + /// # Examples
> > + ///
> > + /// ```
> > + /// let mut v = kernel::kvec![1, 2, 3]?;
> > + /// v.reserve(1, GFP_KERNEL)?;
> > + ///
> > + /// let (mut ptr, mut len, cap) = v.into_raw_parts();
> > + ///
> > + /// // SAFETY: We've just reserved memory for another element.
> > + /// unsafe { ptr.add(len).write(4) };
> > + /// len += 1;
> > + ///
> > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
> > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
> > + /// // from the exact same raw parts.
> > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
> > + ///
> > + /// assert_eq!(v, [1, 2, 3, 4]);
> > + ///
> > + /// # Ok::<(), Error>(())
> > + /// ```
> > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
> > + let cap = if Self::is_zst() { 0 } else { capacity };
> > +
> > + Self {
> > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
> > + // memory allocation, allocated with `A`.
> > + ptr: unsafe { Unique::new_unchecked(ptr) },
> > + cap,
> > + len: length,
> > + _p: PhantomData::<A>,
> > + }
> > + }
> > +
> > + /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`).
> > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
> > + let me = ManuallyDrop::new(self);
> > + let len = me.len();
> > + let capacity = me.capacity();
> > + let ptr = me.as_mut_ptr();
> > + (ptr, len, capacity)
> > + }
> > +
> > + /// Ensures that the capacity exceeds the length by at least `additional` elements.
> > + ///
> > + /// # Examples
> > + ///
> > + /// ```
> > + /// let mut v = KVec::new();
> > + /// v.push(1, GFP_KERNEL)?;
> > + ///
> > + /// v.reserve(10, GFP_KERNEL)?;
> > + /// let cap = v.capacity();
> > + /// assert!(cap >= 10);
> > + ///
> > + /// v.reserve(10, GFP_KERNEL)?;
> > + /// let new_cap = v.capacity();
> > + /// assert_eq!(new_cap, cap);
> > + ///
> > + /// # Ok::<(), Error>(())
> > + /// ```
> > + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
> > + let len = self.len();
> > + let cap = self.capacity();
> > +
> > + if cap - len >= additional {
> > + return Ok(());
> > + }
> > +
> > + if Self::is_zst() {
> > + // The capacity is already `usize::MAX` for SZTs, we can't go higher.
> > + return Err(AllocError);
> > + }
> > +
> > + // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
> > + // is greater than `isize::MAX`. So the multiplication by two won't overflow.
>
> You know it won't overflow because of the type invariants. The thing
> about Layout::array should instead be used to argue why setting
> self.cap below does not break the invariants.
Good point, I will reword it.
>
> > + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
> > + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
> > +
> > + // We need to make sure that `ptr` is either NULL or comes from a previous call to
> > + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
> > + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
> > + // capacity to be zero if no memory has been allocated yet.
> > + let ptr = if cap == 0 {
> > + None
> > + } else {
> > + Some(self.ptr.as_non_null().cast())
> > + };
> > +
> > + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
> > + // `A::realloc`. We also verified that the type is not a ZST.
> > + let ptr = unsafe { A::realloc(ptr, layout, flags)? };
> > +
> > + self.ptr = ptr.cast().into();
> > + self.cap = new_cap;
> > +
> > + Ok(())
> > + }
> > +}
> > +
> > +impl<T: Clone, A: Allocator> Vec<T, A> {
> > + /// Extend the vector by `n` clones of value.
> > + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
> > + self.reserve(n, flags)?;
> > +
> > + let spare = self.spare_capacity_mut();
> > +
> > + for i in 0..spare.len() - 1 {
> > + spare[i].write(value.clone());
> > + }
>
> Minus one? Shouldn't this instead loop for `0..n`?
We can indeed just use `n` instead of `slice::len` here.
Minus one, because we create clones for the first n - 1 elements and for the
last one we just use the value itself.
>
> > +
> > + // We can write the last element directly without cloning needlessly
> > + spare[spare.len() - 1].write(value);
>
> spare[n-1].write(value);
Yep, works too.
>
> > +
> > + // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not
> > + // exceeding the capacity of this `Vec`.
> > + unsafe { self.set_len(self.len() + n) };
> > +
> > + Ok(())
> > + }
> > +
> > + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
> > + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
> > + let mut v = Self::with_capacity(n, flags)?;
> > +
> > + v.extend_with(n, value, flags)?;
> > +
> > + Ok(v)
> > + }
> > +}
> > +
> > +impl<T, A> Drop for Vec<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + fn drop(&mut self) {
> > + // SAFETY: We need to drop the vector's elements in place, before we free the backing
> > + // memory.
> > + unsafe {
> > + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
> > + self.as_mut_ptr(),
> > + self.len,
> > + ))
> > + };
> > +
> > + // If `cap == 0` we never allocated any memory in the first place.
> > + if self.cap != 0 {
> > + // SAFETY: `self.ptr` was previously allocated with `A`.
> > + unsafe { A::free(self.ptr.as_non_null().cast()) };
>
> Do you need a ZST check here?
No, for ZST `self.cap` is always zero.
>
> > + }
> > + }
> > +}
> > +
> > +impl<T> Default for KVec<T> {
> > + #[inline]
> > + fn default() -> Self {
> > + Self::new()
> > + }
> > +}
> > +
> > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
> > + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
> > + fmt::Debug::fmt(&**self, f)
> > + }
> > +}
> > +
> > +impl<T, A> Deref for Vec<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + type Target = [T];
> > +
> > + #[inline]
> > + fn deref(&self) -> &[T] {
> > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > + // initialized elements of type `T`.
> > + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
> > + }
> > +}
> > +
> > +impl<T, A> DerefMut for Vec<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + #[inline]
> > + fn deref_mut(&mut self) -> &mut [T] {
> > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > + // initialized elements of type `T`.
> > + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
> > + }
> > +}
> > +
> > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
> > +
> > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + type Output = I::Output;
> > +
> > + #[inline]
> > + fn index(&self, index: I) -> &Self::Output {
> > + Index::index(&**self, index)
> > + }
> > +}
> > +
> > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
> > +where
> > + A: Allocator,
> > +{
> > + #[inline]
> > + fn index_mut(&mut self, index: I) -> &mut Self::Output {
> > + IndexMut::index_mut(&mut **self, index)
> > + }
> > +}
> > +
> > +macro_rules! __impl_slice_eq {
> > + ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
> > + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
> > + where
> > + T: PartialEq<U>,
> > + $($ty: $bound)?
> > + {
> > + #[inline]
> > + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
> > + }
> > + }
> > +}
> > +
> > +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
> > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] }
> > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] }
> > +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> }
> > +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> }
> > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] }
> > +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
> > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
> > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
> > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
> > index 6bf77577eae7..bb80a43d20fb 100644
> > --- a/rust/kernel/prelude.rs
> > +++ b/rust/kernel/prelude.rs
> > @@ -14,7 +14,7 @@
> > #[doc(no_inline)]
> > pub use core::pin::Pin;
> >
> > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox};
> > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec};
> >
> > #[doc(no_inline)]
> > pub use alloc::vec::Vec;
> > --
> > 2.45.2
> >
>
On Thu, Aug 1, 2024 at 5:28 PM Danilo Krummrich <dakr@kernel.org> wrote:
>
> On Thu, Aug 01, 2024 at 05:05:41PM +0200, Alice Ryhl wrote:
> > On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote:
> > >
> > > `Vec` provides a contiguous growable array type (such as `Vec`) with
> > > contents allocated with the kernel's allocators (e.g. `Kmalloc`,
> > > `Vmalloc` or `KVmalloc`).
> > >
> > > In contrast to Rust's `Vec` type, the kernel `Vec` type considers the
> > > kernel's GFP flags for all appropriate functions, always reports
> > > allocation failures through `Result<_, AllocError>` and remains
> > > independent from unstable features.
> > >
> > > Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> > > ---
> > > rust/kernel/alloc.rs | 6 +
> > > rust/kernel/alloc/kbox.rs | 16 +-
> > > rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++
> > > rust/kernel/prelude.rs | 2 +-
> > > 4 files changed, 605 insertions(+), 2 deletions(-)
> > > create mode 100644 rust/kernel/alloc/kvec.rs
> > >
> > > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> > > index 4bddd023aa7f..bd93140f3094 100644
> > > --- a/rust/kernel/alloc.rs
> > > +++ b/rust/kernel/alloc.rs
> > > @@ -5,6 +5,7 @@
> > > #[cfg(not(any(test, testlib)))]
> > > pub mod allocator;
> > > pub mod kbox;
> > > +pub mod kvec;
> > > pub mod vec_ext;
> > >
> > > #[cfg(any(test, testlib))]
> > > @@ -18,6 +19,11 @@
> > > pub use self::kbox::KVBox;
> > > pub use self::kbox::VBox;
> > >
> > > +pub use self::kvec::KVVec;
> > > +pub use self::kvec::KVec;
> > > +pub use self::kvec::VVec;
> > > +pub use self::kvec::Vec;
> > > +
> > > /// Indicates an allocation error.
> > > #[derive(Copy, Clone, PartialEq, Eq, Debug)]
> > > pub struct AllocError;
> > > diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
> > > index 7074f00e07bc..39feaed4a8f8 100644
> > > --- a/rust/kernel/alloc/kbox.rs
> > > +++ b/rust/kernel/alloc/kbox.rs
> > > @@ -2,7 +2,7 @@
> > >
> > > //! Implementation of [`Box`].
> > >
> > > -use super::{AllocError, Allocator, Flags};
> > > +use super::{AllocError, Allocator, Flags, Vec};
> > > use core::fmt;
> > > use core::marker::PhantomData;
> > > use core::mem::ManuallyDrop;
> > > @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self>
> > > }
> > > }
> > >
> > > +impl<T, A, const N: usize> Box<[T; N], A>
> > > +where
> > > + A: Allocator,
> > > +{
> > > + /// Convert a `Box<[T], A>` to a `Vec<T, A>`.
> > > + pub fn into_vec(b: Self) -> Vec<T, A> {
> >
> > This doc-comment seems wrong. [T] and [T; N] are not the same thing.
>
> Indeed, gonna fix.
>
> >
> > > + let len = b.len();
> > > + unsafe {
> > > + let ptr = Self::into_raw(b);
> > > + Vec::from_raw_parts(ptr as _, len, len)
> > > + }
> > > + }
> > > +}
> > > +
> > > impl<T, A> Box<MaybeUninit<T>, A>
> > > where
> > > A: Allocator,
> > > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> > > new file mode 100644
> > > index 000000000000..04cc85f7d92c
> > > --- /dev/null
> > > +++ b/rust/kernel/alloc/kvec.rs
> > > @@ -0,0 +1,583 @@
> > > +// SPDX-License-Identifier: GPL-2.0
> > > +
> > > +//! Implementation of [`Vec`].
> > > +
> > > +use super::{AllocError, Allocator, Flags};
> > > +use crate::types::Unique;
> > > +use core::{
> > > + fmt,
> > > + marker::PhantomData,
> > > + mem::{ManuallyDrop, MaybeUninit},
> > > + ops::Deref,
> > > + ops::DerefMut,
> > > + ops::Index,
> > > + ops::IndexMut,
> > > + slice,
> > > + slice::SliceIndex,
> > > +};
> > > +
> > > +/// Create a [`Vec`] containing the arguments.
> > > +///
> > > +/// # Examples
> > > +///
> > > +/// ```
> > > +/// let mut v = kernel::kvec![];
> > > +/// v.push(1, GFP_KERNEL)?;
> > > +/// assert_eq!(v, [1]);
> > > +///
> > > +/// let mut v = kernel::kvec![1; 3]?;
> > > +/// v.push(4, GFP_KERNEL)?;
> > > +/// assert_eq!(v, [1, 1, 1, 4]);
> > > +///
> > > +/// let mut v = kernel::kvec![1, 2, 3]?;
> > > +/// v.push(4, GFP_KERNEL)?;
> > > +/// assert_eq!(v, [1, 2, 3, 4]);
> > > +///
> > > +/// # Ok::<(), Error>(())
> > > +/// ```
> > > +#[macro_export]
> > > +macro_rules! kvec {
> > > + () => (
> > > + {
> > > + $crate::alloc::KVec::new()
> > > + }
> > > + );
> > > + ($elem:expr; $n:expr) => (
> > > + {
> > > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
> > > + }
> > > + );
> > > + ($($x:expr),+ $(,)?) => (
> > > + {
> > > + match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) {
> > > + Ok(b) => Ok($crate::alloc::KBox::into_vec(b)),
> > > + Err(e) => Err(e),
> > > + }
> > > + }
> > > + );
> > > +}
> > > +
> > > +/// The kernel's [`Vec`] type.
> > > +///
> > > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
> > > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`.
> >
> > A closing bracket is missing in this sentence.
>
> Gonna fix.
>
> >
> > > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
> > > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist.
> > > +///
> > > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
> > > +///
> > > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
> > > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length
> > > +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to
> > > +/// allocate (and free) the backing buffer.
> > > +///
> > > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
> > > +/// and manually modified.
> > > +///
> > > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
> > > +/// are added to the vector.
> > > +///
> > > +/// # Invariants
> > > +///
> > > +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory
> > > +/// allocated with `A` or, for zero-sized types, is a dangling pointer.
> > > +///
> > > +/// The length of the vector always represents the exact number of elements stored in the vector.
> > > +///
> > > +/// The capacity of the vector always represents the absolute number of elements that can be stored
> > > +/// within the vector without re-allocation. However, it is legal for the backing buffer to be
> > > +/// larger than `size_of<T>` times the capacity.
> > > +///
> > > +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and
> > > +/// must be freed with).
> > > +pub struct Vec<T, A: Allocator> {
> > > + ptr: Unique<T>,
> > > + /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
> > > + ///
> > > + /// # Safety
> > > + ///
> > > + /// `cap` must be in the `0..=isize::MAX` range.
> > > + cap: usize,
> >
> > This section header should say Invariants, not Safety.
>
> Agreed.
>
> >
> > > + len: usize,
> > > + _p: PhantomData<A>,
> > > +}
> > > +
> > > +/// Type alias for `Vec` with a `Kmalloc` allocator.
> > > +///
> > > +/// # Examples
> > > +///
> > > +/// ```
> > > +/// let mut v = KVec::new();
> > > +/// v.push(1, GFP_KERNEL)?;
> > > +/// assert_eq!(&v, &[1]);
> > > +///
> > > +/// # Ok::<(), Error>(())
> > > +/// ```
> > > +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>;
> > > +
> > > +/// Type alias for `Vec` with a `Vmalloc` allocator.
> > > +///
> > > +/// # Examples
> > > +///
> > > +/// ```
> > > +/// let mut v = VVec::new();
> > > +/// v.push(1, GFP_KERNEL)?;
> > > +/// assert_eq!(&v, &[1]);
> > > +///
> > > +/// # Ok::<(), Error>(())
> > > +/// ```
> > > +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>;
> > > +
> > > +/// Type alias for `Vec` with a `KVmalloc` allocator.
> > > +///
> > > +/// # Examples
> > > +///
> > > +/// ```
> > > +/// let mut v = KVVec::new();
> > > +/// v.push(1, GFP_KERNEL)?;
> > > +/// assert_eq!(&v, &[1]);
> > > +///
> > > +/// # Ok::<(), Error>(())
> > > +/// ```
> > > +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>;
> > > +
> > > +impl<T, A> Vec<T, A>
> > > +where
> > > + A: Allocator,
> > > +{
> > > + #[inline]
> > > + fn is_zst() -> bool {
> > > + core::mem::size_of::<T>() == 0
> > > + }
> > > +
> > > + /// Returns the total number of elements the vector can hold without
> > > + /// reallocating.
> > > + pub fn capacity(&self) -> usize {
> > > + if Self::is_zst() {
> > > + usize::MAX
> > > + } else {
> > > + self.cap
> > > + }
> > > + }
> >
> > I would consider always storing usize::MAX in the capacity field for zst types?
>
> This wouldn't work. `self.cap` is supposed to represent the actual capacity of
> the vector, which for ZSTs is zero.
Storing usize::MAX values of a zero-sized type takes up zero bytes,
and your vector has space for zero bytes. Seems sensible to me to use
usize::MAX.
Anyway, it's up to you. I'm ok either way.
> > > +
> > > + /// Returns the number of elements in the vector, also referred to
> > > + /// as its 'length'.
> > > + #[inline]
> > > + pub fn len(&self) -> usize {
> > > + self.len
> > > + }
> > > +
> > > + /// Forces the length of the vector to new_len.
> > > + ///
> > > + /// # Safety
> > > + ///
> > > + /// - `new_len` must be less than or equal to [`Self::capacity()`].
> > > + /// - The elements at `old_len..new_len` must be initialized.
> > > + #[inline]
> > > + pub unsafe fn set_len(&mut self, new_len: usize) {
> > > + self.len = new_len;
> > > + }
> > > +
> > > + /// Extracts a slice containing the entire vector.
> > > + ///
> > > + /// Equivalent to `&s[..]`.
> > > + #[inline]
> > > + pub fn as_slice(&self) -> &[T] {
> > > + self
> > > + }
> > > +
> > > + /// Extracts a mutable slice of the entire vector.
> > > + ///
> > > + /// Equivalent to `&mut s[..]`.
> > > + #[inline]
> > > + pub fn as_mut_slice(&mut self) -> &mut [T] {
> > > + self
> > > + }
> > > +
> > > + /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
> > > + /// raw pointer valid for zero sized reads if the vector didn't allocate.
> > > + #[inline]
> > > + pub fn as_mut_ptr(&self) -> *mut T {
> > > + self.ptr.as_ptr()
> > > + }
> > > +
> > > + /// Returns a raw pointer to the slice's buffer.
> > > + #[inline]
> > > + pub fn as_ptr(&self) -> *const T {
> > > + self.as_mut_ptr()
> > > + }
> > > +
> > > + /// Returns `true` if the vector contains no elements.
> > > + ///
> > > + /// # Examples
> > > + ///
> > > + /// ```
> > > + /// let mut v = KVec::new();
> > > + /// assert!(v.is_empty());
> > > + ///
> > > + /// v.push(1, GFP_KERNEL);
> > > + /// assert!(!v.is_empty());
> > > + /// ```
> > > + #[inline]
> > > + pub fn is_empty(&self) -> bool {
> > > + self.len() == 0
> > > + }
> > > +
> > > + /// Constructs a new, empty Vec<T, A>.
> > > + ///
> > > + /// This method does not allocate by itself.
> > > + #[inline]
> > > + pub const fn new() -> Self {
> > > + Self {
> > > + ptr: Unique::dangling(),
> > > + cap: 0,
> > > + len: 0,
> > > + _p: PhantomData::<A>,
> > > + }
> > > + }
> > > +
> > > + /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`.
> > > + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
> > > + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
> > > + // and valid, but uninitialized.
> > > + unsafe {
> > > + slice::from_raw_parts_mut(
> > > + self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
> > > + self.capacity() - self.len,
> > > + )
> > > + }
> >
> > Is this correct for ZSTs?
>
> Yes, it gives us a slice of ZSTs with the maximum possible length usize::MAX.
>
> >
> > > + }
> > > +
> > > + /// Appends an element to the back of the [`Vec`] instance.
> > > + ///
> > > + /// # Examples
> > > + ///
> > > + /// ```
> > > + /// let mut v = KVec::new();
> > > + /// v.push(1, GFP_KERNEL)?;
> > > + /// assert_eq!(&v, &[1]);
> > > + ///
> > > + /// v.push(2, GFP_KERNEL)?;
> > > + /// assert_eq!(&v, &[1, 2]);
> > > + /// # Ok::<(), Error>(())
> > > + /// ```
> > > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
> > > + Vec::reserve(self, 1, flags)?;
> > > + let s = self.spare_capacity_mut();
> > > + s[0].write(v);
> > > +
> > > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
> > > + // by 1. We also know that the new length is <= capacity because of the previous call to
> > > + // `reserve` above.
> > > + unsafe { self.set_len(self.len() + 1) };
> > > + Ok(())
> > > + }
> > > +
> > > + /// Creates a new [`Vec`] instance with at least the given capacity.
> > > + ///
> > > + /// # Examples
> > > + ///
> > > + /// ```
> > > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
> > > + ///
> > > + /// assert!(v.capacity() >= 20);
> > > + /// # Ok::<(), Error>(())
> > > + /// ```
> > > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
> > > + let mut v = Vec::new();
> > > +
> > > + Self::reserve(&mut v, capacity, flags)?;
> > > +
> > > + Ok(v)
> > > + }
> > > +
> > > + /// Pushes clones of the elements of slice into the [`Vec`] instance.
> > > + ///
> > > + /// # Examples
> > > + ///
> > > + /// ```
> > > + /// let mut v = KVec::new();
> > > + /// v.push(1, GFP_KERNEL)?;
> > > + ///
> > > + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
> > > + /// assert_eq!(&v, &[1, 20, 30, 40]);
> > > + ///
> > > + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
> > > + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
> > > + /// # Ok::<(), Error>(())
> > > + /// ```
> > > + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
> > > + where
> > > + T: Clone,
> > > + {
> > > + self.reserve(other.len(), flags)?;
> > > + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
> > > + slot.write(item.clone());
> > > + }
> > > +
> > > + // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
> > > + // the length by the same amount. We also know that the new length is <= capacity because
> > > + // of the previous call to `reserve` above.
> > > + unsafe { self.set_len(self.len() + other.len()) };
> > > + Ok(())
> > > + }
> > > +
> > > + /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator.
> > > + ///
> > > + /// # Safety
> > > + ///
> > > + /// This is highly unsafe, due to the number of invariants that aren’t checked:
> > > + ///
> > > + /// - `ptr` must be currently allocated via the given allocator `A`.
> > > + /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less
> > > + /// strict alignment is not sufficient, the alignment really needs to be equal to satisfy the
> > > + /// `dealloc` requirement that memory must be allocated and deallocated with the same layout.)
> > > + /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be
> > > + /// smaller or equal the size the pointer was allocated with.
> > > + /// - `length` needs to be less than or equal to `capacity`.
> > > + /// - The first `length` values must be properly initialized values of type `T`.
> > > + /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety
> > > + /// documentation of `pointer::offset`.
> > > + ///
> > > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
> > > + /// `cap` and `len`.
> > > + ///
> > > + /// # Examples
> > > + ///
> > > + /// ```
> > > + /// let mut v = kernel::kvec![1, 2, 3]?;
> > > + /// v.reserve(1, GFP_KERNEL)?;
> > > + ///
> > > + /// let (mut ptr, mut len, cap) = v.into_raw_parts();
> > > + ///
> > > + /// // SAFETY: We've just reserved memory for another element.
> > > + /// unsafe { ptr.add(len).write(4) };
> > > + /// len += 1;
> > > + ///
> > > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
> > > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
> > > + /// // from the exact same raw parts.
> > > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
> > > + ///
> > > + /// assert_eq!(v, [1, 2, 3, 4]);
> > > + ///
> > > + /// # Ok::<(), Error>(())
> > > + /// ```
> > > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
> > > + let cap = if Self::is_zst() { 0 } else { capacity };
> > > +
> > > + Self {
> > > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
> > > + // memory allocation, allocated with `A`.
> > > + ptr: unsafe { Unique::new_unchecked(ptr) },
> > > + cap,
> > > + len: length,
> > > + _p: PhantomData::<A>,
> > > + }
> > > + }
> > > +
> > > + /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`).
> > > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
> > > + let me = ManuallyDrop::new(self);
> > > + let len = me.len();
> > > + let capacity = me.capacity();
> > > + let ptr = me.as_mut_ptr();
> > > + (ptr, len, capacity)
> > > + }
> > > +
> > > + /// Ensures that the capacity exceeds the length by at least `additional` elements.
> > > + ///
> > > + /// # Examples
> > > + ///
> > > + /// ```
> > > + /// let mut v = KVec::new();
> > > + /// v.push(1, GFP_KERNEL)?;
> > > + ///
> > > + /// v.reserve(10, GFP_KERNEL)?;
> > > + /// let cap = v.capacity();
> > > + /// assert!(cap >= 10);
> > > + ///
> > > + /// v.reserve(10, GFP_KERNEL)?;
> > > + /// let new_cap = v.capacity();
> > > + /// assert_eq!(new_cap, cap);
> > > + ///
> > > + /// # Ok::<(), Error>(())
> > > + /// ```
> > > + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
> > > + let len = self.len();
> > > + let cap = self.capacity();
> > > +
> > > + if cap - len >= additional {
> > > + return Ok(());
> > > + }
> > > +
> > > + if Self::is_zst() {
> > > + // The capacity is already `usize::MAX` for SZTs, we can't go higher.
> > > + return Err(AllocError);
> > > + }
> > > +
> > > + // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
> > > + // is greater than `isize::MAX`. So the multiplication by two won't overflow.
> >
> > You know it won't overflow because of the type invariants. The thing
> > about Layout::array should instead be used to argue why setting
> > self.cap below does not break the invariants.
>
> Good point, I will reword it.
>
> >
> > > + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
> > > + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
> > > +
> > > + // We need to make sure that `ptr` is either NULL or comes from a previous call to
> > > + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
> > > + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
> > > + // capacity to be zero if no memory has been allocated yet.
> > > + let ptr = if cap == 0 {
> > > + None
> > > + } else {
> > > + Some(self.ptr.as_non_null().cast())
> > > + };
> > > +
> > > + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
> > > + // `A::realloc`. We also verified that the type is not a ZST.
> > > + let ptr = unsafe { A::realloc(ptr, layout, flags)? };
> > > +
> > > + self.ptr = ptr.cast().into();
> > > + self.cap = new_cap;
> > > +
> > > + Ok(())
> > > + }
> > > +}
> > > +
> > > +impl<T: Clone, A: Allocator> Vec<T, A> {
> > > + /// Extend the vector by `n` clones of value.
> > > + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
> > > + self.reserve(n, flags)?;
> > > +
> > > + let spare = self.spare_capacity_mut();
> > > +
> > > + for i in 0..spare.len() - 1 {
> > > + spare[i].write(value.clone());
> > > + }
> >
> > Minus one? Shouldn't this instead loop for `0..n`?
>
> We can indeed just use `n` instead of `slice::len` here.
But `spare.len()` could be longer than `n`?
>
> Minus one, because we create clones for the first n - 1 elements and for the
> last one we just use the value itself.
>
> >
> > > +
> > > + // We can write the last element directly without cloning needlessly
> > > + spare[spare.len() - 1].write(value);
> >
> > spare[n-1].write(value);
>
> Yep, works too.
>
> >
> > > +
> > > + // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not
> > > + // exceeding the capacity of this `Vec`.
> > > + unsafe { self.set_len(self.len() + n) };
> > > +
> > > + Ok(())
> > > + }
> > > +
> > > + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
> > > + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
> > > + let mut v = Self::with_capacity(n, flags)?;
> > > +
> > > + v.extend_with(n, value, flags)?;
> > > +
> > > + Ok(v)
> > > + }
> > > +}
> > > +
> > > +impl<T, A> Drop for Vec<T, A>
> > > +where
> > > + A: Allocator,
> > > +{
> > > + fn drop(&mut self) {
> > > + // SAFETY: We need to drop the vector's elements in place, before we free the backing
> > > + // memory.
> > > + unsafe {
> > > + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
> > > + self.as_mut_ptr(),
> > > + self.len,
> > > + ))
> > > + };
> > > +
> > > + // If `cap == 0` we never allocated any memory in the first place.
> > > + if self.cap != 0 {
> > > + // SAFETY: `self.ptr` was previously allocated with `A`.
> > > + unsafe { A::free(self.ptr.as_non_null().cast()) };
> >
> > Do you need a ZST check here?
>
> No, for ZST `self.cap` is always zero.
>
> >
> > > + }
> > > + }
> > > +}
> > > +
> > > +impl<T> Default for KVec<T> {
> > > + #[inline]
> > > + fn default() -> Self {
> > > + Self::new()
> > > + }
> > > +}
> > > +
> > > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
> > > + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
> > > + fmt::Debug::fmt(&**self, f)
> > > + }
> > > +}
> > > +
> > > +impl<T, A> Deref for Vec<T, A>
> > > +where
> > > + A: Allocator,
> > > +{
> > > + type Target = [T];
> > > +
> > > + #[inline]
> > > + fn deref(&self) -> &[T] {
> > > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > > + // initialized elements of type `T`.
> > > + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
> > > + }
> > > +}
> > > +
> > > +impl<T, A> DerefMut for Vec<T, A>
> > > +where
> > > + A: Allocator,
> > > +{
> > > + #[inline]
> > > + fn deref_mut(&mut self) -> &mut [T] {
> > > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > > + // initialized elements of type `T`.
> > > + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
> > > + }
> > > +}
> > > +
> > > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
> > > +
> > > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
> > > +where
> > > + A: Allocator,
> > > +{
> > > + type Output = I::Output;
> > > +
> > > + #[inline]
> > > + fn index(&self, index: I) -> &Self::Output {
> > > + Index::index(&**self, index)
> > > + }
> > > +}
> > > +
> > > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
> > > +where
> > > + A: Allocator,
> > > +{
> > > + #[inline]
> > > + fn index_mut(&mut self, index: I) -> &mut Self::Output {
> > > + IndexMut::index_mut(&mut **self, index)
> > > + }
> > > +}
> > > +
> > > +macro_rules! __impl_slice_eq {
> > > + ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
> > > + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
> > > + where
> > > + T: PartialEq<U>,
> > > + $($ty: $bound)?
> > > + {
> > > + #[inline]
> > > + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
> > > + }
> > > + }
> > > +}
> > > +
> > > +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
> > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] }
> > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] }
> > > +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> }
> > > +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> }
> > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] }
> > > +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
> > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
> > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
> > > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
> > > index 6bf77577eae7..bb80a43d20fb 100644
> > > --- a/rust/kernel/prelude.rs
> > > +++ b/rust/kernel/prelude.rs
> > > @@ -14,7 +14,7 @@
> > > #[doc(no_inline)]
> > > pub use core::pin::Pin;
> > >
> > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox};
> > > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec};
> > >
> > > #[doc(no_inline)]
> > > pub use alloc::vec::Vec;
> > > --
> > > 2.45.2
> > >
> >
On Thu, Aug 01, 2024 at 05:31:48PM +0200, Alice Ryhl wrote:
> On Thu, Aug 1, 2024 at 5:28 PM Danilo Krummrich <dakr@kernel.org> wrote:
> >
> > On Thu, Aug 01, 2024 at 05:05:41PM +0200, Alice Ryhl wrote:
> > > On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote:
> > > >
> > > > `Vec` provides a contiguous growable array type (such as `Vec`) with
> > > > contents allocated with the kernel's allocators (e.g. `Kmalloc`,
> > > > `Vmalloc` or `KVmalloc`).
> > > >
> > > > In contrast to Rust's `Vec` type, the kernel `Vec` type considers the
> > > > kernel's GFP flags for all appropriate functions, always reports
> > > > allocation failures through `Result<_, AllocError>` and remains
> > > > independent from unstable features.
> > > >
> > > > Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> > > > ---
> > > > rust/kernel/alloc.rs | 6 +
> > > > rust/kernel/alloc/kbox.rs | 16 +-
> > > > rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++
> > > > rust/kernel/prelude.rs | 2 +-
> > > > 4 files changed, 605 insertions(+), 2 deletions(-)
> > > > create mode 100644 rust/kernel/alloc/kvec.rs
> > > >
> > > > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> > > > index 4bddd023aa7f..bd93140f3094 100644
> > > > --- a/rust/kernel/alloc.rs
> > > > +++ b/rust/kernel/alloc.rs
> > > > @@ -5,6 +5,7 @@
> > > > #[cfg(not(any(test, testlib)))]
> > > > pub mod allocator;
> > > > pub mod kbox;
> > > > +pub mod kvec;
> > > > pub mod vec_ext;
> > > >
> > > > #[cfg(any(test, testlib))]
> > > > @@ -18,6 +19,11 @@
> > > > pub use self::kbox::KVBox;
> > > > pub use self::kbox::VBox;
> > > >
> > > > +pub use self::kvec::KVVec;
> > > > +pub use self::kvec::KVec;
> > > > +pub use self::kvec::VVec;
> > > > +pub use self::kvec::Vec;
> > > > +
> > > > /// Indicates an allocation error.
> > > > #[derive(Copy, Clone, PartialEq, Eq, Debug)]
> > > > pub struct AllocError;
> > > > diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
> > > > index 7074f00e07bc..39feaed4a8f8 100644
> > > > --- a/rust/kernel/alloc/kbox.rs
> > > > +++ b/rust/kernel/alloc/kbox.rs
> > > > @@ -2,7 +2,7 @@
> > > >
> > > > //! Implementation of [`Box`].
> > > >
> > > > -use super::{AllocError, Allocator, Flags};
> > > > +use super::{AllocError, Allocator, Flags, Vec};
> > > > use core::fmt;
> > > > use core::marker::PhantomData;
> > > > use core::mem::ManuallyDrop;
> > > > @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self>
> > > > }
> > > > }
> > > >
> > > > +impl<T, A, const N: usize> Box<[T; N], A>
> > > > +where
> > > > + A: Allocator,
> > > > +{
> > > > + /// Convert a `Box<[T], A>` to a `Vec<T, A>`.
> > > > + pub fn into_vec(b: Self) -> Vec<T, A> {
> > >
> > > This doc-comment seems wrong. [T] and [T; N] are not the same thing.
> >
> > Indeed, gonna fix.
> >
> > >
> > > > + let len = b.len();
> > > > + unsafe {
> > > > + let ptr = Self::into_raw(b);
> > > > + Vec::from_raw_parts(ptr as _, len, len)
> > > > + }
> > > > + }
> > > > +}
> > > > +
> > > > impl<T, A> Box<MaybeUninit<T>, A>
> > > > where
> > > > A: Allocator,
> > > > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> > > > new file mode 100644
> > > > index 000000000000..04cc85f7d92c
> > > > --- /dev/null
> > > > +++ b/rust/kernel/alloc/kvec.rs
> > > > @@ -0,0 +1,583 @@
> > > > +// SPDX-License-Identifier: GPL-2.0
> > > > +
> > > > +//! Implementation of [`Vec`].
> > > > +
> > > > +use super::{AllocError, Allocator, Flags};
> > > > +use crate::types::Unique;
> > > > +use core::{
> > > > + fmt,
> > > > + marker::PhantomData,
> > > > + mem::{ManuallyDrop, MaybeUninit},
> > > > + ops::Deref,
> > > > + ops::DerefMut,
> > > > + ops::Index,
> > > > + ops::IndexMut,
> > > > + slice,
> > > > + slice::SliceIndex,
> > > > +};
> > > > +
> > > > +/// Create a [`Vec`] containing the arguments.
> > > > +///
> > > > +/// # Examples
> > > > +///
> > > > +/// ```
> > > > +/// let mut v = kernel::kvec![];
> > > > +/// v.push(1, GFP_KERNEL)?;
> > > > +/// assert_eq!(v, [1]);
> > > > +///
> > > > +/// let mut v = kernel::kvec![1; 3]?;
> > > > +/// v.push(4, GFP_KERNEL)?;
> > > > +/// assert_eq!(v, [1, 1, 1, 4]);
> > > > +///
> > > > +/// let mut v = kernel::kvec![1, 2, 3]?;
> > > > +/// v.push(4, GFP_KERNEL)?;
> > > > +/// assert_eq!(v, [1, 2, 3, 4]);
> > > > +///
> > > > +/// # Ok::<(), Error>(())
> > > > +/// ```
> > > > +#[macro_export]
> > > > +macro_rules! kvec {
> > > > + () => (
> > > > + {
> > > > + $crate::alloc::KVec::new()
> > > > + }
> > > > + );
> > > > + ($elem:expr; $n:expr) => (
> > > > + {
> > > > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
> > > > + }
> > > > + );
> > > > + ($($x:expr),+ $(,)?) => (
> > > > + {
> > > > + match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) {
> > > > + Ok(b) => Ok($crate::alloc::KBox::into_vec(b)),
> > > > + Err(e) => Err(e),
> > > > + }
> > > > + }
> > > > + );
> > > > +}
> > > > +
> > > > +/// The kernel's [`Vec`] type.
> > > > +///
> > > > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
> > > > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`.
> > >
> > > A closing bracket is missing in this sentence.
> >
> > Gonna fix.
> >
> > >
> > > > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
> > > > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist.
> > > > +///
> > > > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
> > > > +///
> > > > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
> > > > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length
> > > > +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to
> > > > +/// allocate (and free) the backing buffer.
> > > > +///
> > > > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
> > > > +/// and manually modified.
> > > > +///
> > > > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
> > > > +/// are added to the vector.
> > > > +///
> > > > +/// # Invariants
> > > > +///
> > > > +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory
> > > > +/// allocated with `A` or, for zero-sized types, is a dangling pointer.
> > > > +///
> > > > +/// The length of the vector always represents the exact number of elements stored in the vector.
> > > > +///
> > > > +/// The capacity of the vector always represents the absolute number of elements that can be stored
> > > > +/// within the vector without re-allocation. However, it is legal for the backing buffer to be
> > > > +/// larger than `size_of<T>` times the capacity.
> > > > +///
> > > > +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and
> > > > +/// must be freed with).
> > > > +pub struct Vec<T, A: Allocator> {
> > > > + ptr: Unique<T>,
> > > > + /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
> > > > + ///
> > > > + /// # Safety
> > > > + ///
> > > > + /// `cap` must be in the `0..=isize::MAX` range.
> > > > + cap: usize,
> > >
> > > This section header should say Invariants, not Safety.
> >
> > Agreed.
> >
> > >
> > > > + len: usize,
> > > > + _p: PhantomData<A>,
> > > > +}
> > > > +
> > > > +/// Type alias for `Vec` with a `Kmalloc` allocator.
> > > > +///
> > > > +/// # Examples
> > > > +///
> > > > +/// ```
> > > > +/// let mut v = KVec::new();
> > > > +/// v.push(1, GFP_KERNEL)?;
> > > > +/// assert_eq!(&v, &[1]);
> > > > +///
> > > > +/// # Ok::<(), Error>(())
> > > > +/// ```
> > > > +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>;
> > > > +
> > > > +/// Type alias for `Vec` with a `Vmalloc` allocator.
> > > > +///
> > > > +/// # Examples
> > > > +///
> > > > +/// ```
> > > > +/// let mut v = VVec::new();
> > > > +/// v.push(1, GFP_KERNEL)?;
> > > > +/// assert_eq!(&v, &[1]);
> > > > +///
> > > > +/// # Ok::<(), Error>(())
> > > > +/// ```
> > > > +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>;
> > > > +
> > > > +/// Type alias for `Vec` with a `KVmalloc` allocator.
> > > > +///
> > > > +/// # Examples
> > > > +///
> > > > +/// ```
> > > > +/// let mut v = KVVec::new();
> > > > +/// v.push(1, GFP_KERNEL)?;
> > > > +/// assert_eq!(&v, &[1]);
> > > > +///
> > > > +/// # Ok::<(), Error>(())
> > > > +/// ```
> > > > +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>;
> > > > +
> > > > +impl<T, A> Vec<T, A>
> > > > +where
> > > > + A: Allocator,
> > > > +{
> > > > + #[inline]
> > > > + fn is_zst() -> bool {
> > > > + core::mem::size_of::<T>() == 0
> > > > + }
> > > > +
> > > > + /// Returns the total number of elements the vector can hold without
> > > > + /// reallocating.
> > > > + pub fn capacity(&self) -> usize {
> > > > + if Self::is_zst() {
> > > > + usize::MAX
> > > > + } else {
> > > > + self.cap
> > > > + }
> > > > + }
> > >
> > > I would consider always storing usize::MAX in the capacity field for zst types?
> >
> > This wouldn't work. `self.cap` is supposed to represent the actual capacity of
> > the vector, which for ZSTs is zero.
>
> Storing usize::MAX values of a zero-sized type takes up zero bytes,
> and your vector has space for zero bytes. Seems sensible to me to use
> usize::MAX.
The logic here really is that `self.cap` represents the actual buffer size,
whereas `Self::capacity` represents the number of elements we can still store
without reallocating. Depending on the case we need to know one or the other.
I can add a comment to make this more clear if you prefer.
>
> Anyway, it's up to you. I'm ok either way.
>
> > > > +
> > > > + /// Returns the number of elements in the vector, also referred to
> > > > + /// as its 'length'.
> > > > + #[inline]
> > > > + pub fn len(&self) -> usize {
> > > > + self.len
> > > > + }
> > > > +
> > > > + /// Forces the length of the vector to new_len.
> > > > + ///
> > > > + /// # Safety
> > > > + ///
> > > > + /// - `new_len` must be less than or equal to [`Self::capacity()`].
> > > > + /// - The elements at `old_len..new_len` must be initialized.
> > > > + #[inline]
> > > > + pub unsafe fn set_len(&mut self, new_len: usize) {
> > > > + self.len = new_len;
> > > > + }
> > > > +
> > > > + /// Extracts a slice containing the entire vector.
> > > > + ///
> > > > + /// Equivalent to `&s[..]`.
> > > > + #[inline]
> > > > + pub fn as_slice(&self) -> &[T] {
> > > > + self
> > > > + }
> > > > +
> > > > + /// Extracts a mutable slice of the entire vector.
> > > > + ///
> > > > + /// Equivalent to `&mut s[..]`.
> > > > + #[inline]
> > > > + pub fn as_mut_slice(&mut self) -> &mut [T] {
> > > > + self
> > > > + }
> > > > +
> > > > + /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
> > > > + /// raw pointer valid for zero sized reads if the vector didn't allocate.
> > > > + #[inline]
> > > > + pub fn as_mut_ptr(&self) -> *mut T {
> > > > + self.ptr.as_ptr()
> > > > + }
> > > > +
> > > > + /// Returns a raw pointer to the slice's buffer.
> > > > + #[inline]
> > > > + pub fn as_ptr(&self) -> *const T {
> > > > + self.as_mut_ptr()
> > > > + }
> > > > +
> > > > + /// Returns `true` if the vector contains no elements.
> > > > + ///
> > > > + /// # Examples
> > > > + ///
> > > > + /// ```
> > > > + /// let mut v = KVec::new();
> > > > + /// assert!(v.is_empty());
> > > > + ///
> > > > + /// v.push(1, GFP_KERNEL);
> > > > + /// assert!(!v.is_empty());
> > > > + /// ```
> > > > + #[inline]
> > > > + pub fn is_empty(&self) -> bool {
> > > > + self.len() == 0
> > > > + }
> > > > +
> > > > + /// Constructs a new, empty Vec<T, A>.
> > > > + ///
> > > > + /// This method does not allocate by itself.
> > > > + #[inline]
> > > > + pub const fn new() -> Self {
> > > > + Self {
> > > > + ptr: Unique::dangling(),
> > > > + cap: 0,
> > > > + len: 0,
> > > > + _p: PhantomData::<A>,
> > > > + }
> > > > + }
> > > > +
> > > > + /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`.
> > > > + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
> > > > + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
> > > > + // and valid, but uninitialized.
> > > > + unsafe {
> > > > + slice::from_raw_parts_mut(
> > > > + self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
> > > > + self.capacity() - self.len,
> > > > + )
> > > > + }
> > >
> > > Is this correct for ZSTs?
> >
> > Yes, it gives us a slice of ZSTs with the maximum possible length usize::MAX.
> >
> > >
> > > > + }
> > > > +
> > > > + /// Appends an element to the back of the [`Vec`] instance.
> > > > + ///
> > > > + /// # Examples
> > > > + ///
> > > > + /// ```
> > > > + /// let mut v = KVec::new();
> > > > + /// v.push(1, GFP_KERNEL)?;
> > > > + /// assert_eq!(&v, &[1]);
> > > > + ///
> > > > + /// v.push(2, GFP_KERNEL)?;
> > > > + /// assert_eq!(&v, &[1, 2]);
> > > > + /// # Ok::<(), Error>(())
> > > > + /// ```
> > > > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
> > > > + Vec::reserve(self, 1, flags)?;
> > > > + let s = self.spare_capacity_mut();
> > > > + s[0].write(v);
> > > > +
> > > > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
> > > > + // by 1. We also know that the new length is <= capacity because of the previous call to
> > > > + // `reserve` above.
> > > > + unsafe { self.set_len(self.len() + 1) };
> > > > + Ok(())
> > > > + }
> > > > +
> > > > + /// Creates a new [`Vec`] instance with at least the given capacity.
> > > > + ///
> > > > + /// # Examples
> > > > + ///
> > > > + /// ```
> > > > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
> > > > + ///
> > > > + /// assert!(v.capacity() >= 20);
> > > > + /// # Ok::<(), Error>(())
> > > > + /// ```
> > > > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
> > > > + let mut v = Vec::new();
> > > > +
> > > > + Self::reserve(&mut v, capacity, flags)?;
> > > > +
> > > > + Ok(v)
> > > > + }
> > > > +
> > > > + /// Pushes clones of the elements of slice into the [`Vec`] instance.
> > > > + ///
> > > > + /// # Examples
> > > > + ///
> > > > + /// ```
> > > > + /// let mut v = KVec::new();
> > > > + /// v.push(1, GFP_KERNEL)?;
> > > > + ///
> > > > + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
> > > > + /// assert_eq!(&v, &[1, 20, 30, 40]);
> > > > + ///
> > > > + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
> > > > + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
> > > > + /// # Ok::<(), Error>(())
> > > > + /// ```
> > > > + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
> > > > + where
> > > > + T: Clone,
> > > > + {
> > > > + self.reserve(other.len(), flags)?;
> > > > + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
> > > > + slot.write(item.clone());
> > > > + }
> > > > +
> > > > + // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
> > > > + // the length by the same amount. We also know that the new length is <= capacity because
> > > > + // of the previous call to `reserve` above.
> > > > + unsafe { self.set_len(self.len() + other.len()) };
> > > > + Ok(())
> > > > + }
> > > > +
> > > > + /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator.
> > > > + ///
> > > > + /// # Safety
> > > > + ///
> > > > + /// This is highly unsafe, due to the number of invariants that aren’t checked:
> > > > + ///
> > > > + /// - `ptr` must be currently allocated via the given allocator `A`.
> > > > + /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less
> > > > + /// strict alignment is not sufficient, the alignment really needs to be equal to satisfy the
> > > > + /// `dealloc` requirement that memory must be allocated and deallocated with the same layout.)
> > > > + /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be
> > > > + /// smaller or equal the size the pointer was allocated with.
> > > > + /// - `length` needs to be less than or equal to `capacity`.
> > > > + /// - The first `length` values must be properly initialized values of type `T`.
> > > > + /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety
> > > > + /// documentation of `pointer::offset`.
> > > > + ///
> > > > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
> > > > + /// `cap` and `len`.
> > > > + ///
> > > > + /// # Examples
> > > > + ///
> > > > + /// ```
> > > > + /// let mut v = kernel::kvec![1, 2, 3]?;
> > > > + /// v.reserve(1, GFP_KERNEL)?;
> > > > + ///
> > > > + /// let (mut ptr, mut len, cap) = v.into_raw_parts();
> > > > + ///
> > > > + /// // SAFETY: We've just reserved memory for another element.
> > > > + /// unsafe { ptr.add(len).write(4) };
> > > > + /// len += 1;
> > > > + ///
> > > > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
> > > > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
> > > > + /// // from the exact same raw parts.
> > > > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
> > > > + ///
> > > > + /// assert_eq!(v, [1, 2, 3, 4]);
> > > > + ///
> > > > + /// # Ok::<(), Error>(())
> > > > + /// ```
> > > > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
> > > > + let cap = if Self::is_zst() { 0 } else { capacity };
> > > > +
> > > > + Self {
> > > > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
> > > > + // memory allocation, allocated with `A`.
> > > > + ptr: unsafe { Unique::new_unchecked(ptr) },
> > > > + cap,
> > > > + len: length,
> > > > + _p: PhantomData::<A>,
> > > > + }
> > > > + }
> > > > +
> > > > + /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`).
> > > > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
> > > > + let me = ManuallyDrop::new(self);
> > > > + let len = me.len();
> > > > + let capacity = me.capacity();
> > > > + let ptr = me.as_mut_ptr();
> > > > + (ptr, len, capacity)
> > > > + }
> > > > +
> > > > + /// Ensures that the capacity exceeds the length by at least `additional` elements.
> > > > + ///
> > > > + /// # Examples
> > > > + ///
> > > > + /// ```
> > > > + /// let mut v = KVec::new();
> > > > + /// v.push(1, GFP_KERNEL)?;
> > > > + ///
> > > > + /// v.reserve(10, GFP_KERNEL)?;
> > > > + /// let cap = v.capacity();
> > > > + /// assert!(cap >= 10);
> > > > + ///
> > > > + /// v.reserve(10, GFP_KERNEL)?;
> > > > + /// let new_cap = v.capacity();
> > > > + /// assert_eq!(new_cap, cap);
> > > > + ///
> > > > + /// # Ok::<(), Error>(())
> > > > + /// ```
> > > > + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
> > > > + let len = self.len();
> > > > + let cap = self.capacity();
> > > > +
> > > > + if cap - len >= additional {
> > > > + return Ok(());
> > > > + }
> > > > +
> > > > + if Self::is_zst() {
> > > > + // The capacity is already `usize::MAX` for SZTs, we can't go higher.
> > > > + return Err(AllocError);
> > > > + }
> > > > +
> > > > + // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
> > > > + // is greater than `isize::MAX`. So the multiplication by two won't overflow.
> > >
> > > You know it won't overflow because of the type invariants. The thing
> > > about Layout::array should instead be used to argue why setting
> > > self.cap below does not break the invariants.
> >
> > Good point, I will reword it.
> >
> > >
> > > > + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
> > > > + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
> > > > +
> > > > + // We need to make sure that `ptr` is either NULL or comes from a previous call to
> > > > + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
> > > > + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
> > > > + // capacity to be zero if no memory has been allocated yet.
> > > > + let ptr = if cap == 0 {
> > > > + None
> > > > + } else {
> > > > + Some(self.ptr.as_non_null().cast())
> > > > + };
> > > > +
> > > > + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
> > > > + // `A::realloc`. We also verified that the type is not a ZST.
> > > > + let ptr = unsafe { A::realloc(ptr, layout, flags)? };
> > > > +
> > > > + self.ptr = ptr.cast().into();
> > > > + self.cap = new_cap;
> > > > +
> > > > + Ok(())
> > > > + }
> > > > +}
> > > > +
> > > > +impl<T: Clone, A: Allocator> Vec<T, A> {
> > > > + /// Extend the vector by `n` clones of value.
> > > > + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
> > > > + self.reserve(n, flags)?;
> > > > +
> > > > + let spare = self.spare_capacity_mut();
> > > > +
> > > > + for i in 0..spare.len() - 1 {
> > > > + spare[i].write(value.clone());
> > > > + }
> > >
> > > Minus one? Shouldn't this instead loop for `0..n`?
> >
> > We can indeed just use `n` instead of `slice::len` here.
>
> But `spare.len()` could be longer than `n`?
You're right, we *have to* use `n`. Gonna fix that.
>
> >
> > Minus one, because we create clones for the first n - 1 elements and for the
> > last one we just use the value itself.
> >
> > >
> > > > +
> > > > + // We can write the last element directly without cloning needlessly
> > > > + spare[spare.len() - 1].write(value);
> > >
> > > spare[n-1].write(value);
> >
> > Yep, works too.
> >
> > >
> > > > +
> > > > + // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not
> > > > + // exceeding the capacity of this `Vec`.
> > > > + unsafe { self.set_len(self.len() + n) };
> > > > +
> > > > + Ok(())
> > > > + }
> > > > +
> > > > + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
> > > > + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
> > > > + let mut v = Self::with_capacity(n, flags)?;
> > > > +
> > > > + v.extend_with(n, value, flags)?;
> > > > +
> > > > + Ok(v)
> > > > + }
> > > > +}
> > > > +
> > > > +impl<T, A> Drop for Vec<T, A>
> > > > +where
> > > > + A: Allocator,
> > > > +{
> > > > + fn drop(&mut self) {
> > > > + // SAFETY: We need to drop the vector's elements in place, before we free the backing
> > > > + // memory.
> > > > + unsafe {
> > > > + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
> > > > + self.as_mut_ptr(),
> > > > + self.len,
> > > > + ))
> > > > + };
> > > > +
> > > > + // If `cap == 0` we never allocated any memory in the first place.
> > > > + if self.cap != 0 {
> > > > + // SAFETY: `self.ptr` was previously allocated with `A`.
> > > > + unsafe { A::free(self.ptr.as_non_null().cast()) };
> > >
> > > Do you need a ZST check here?
> >
> > No, for ZST `self.cap` is always zero.
> >
> > >
> > > > + }
> > > > + }
> > > > +}
> > > > +
> > > > +impl<T> Default for KVec<T> {
> > > > + #[inline]
> > > > + fn default() -> Self {
> > > > + Self::new()
> > > > + }
> > > > +}
> > > > +
> > > > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
> > > > + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
> > > > + fmt::Debug::fmt(&**self, f)
> > > > + }
> > > > +}
> > > > +
> > > > +impl<T, A> Deref for Vec<T, A>
> > > > +where
> > > > + A: Allocator,
> > > > +{
> > > > + type Target = [T];
> > > > +
> > > > + #[inline]
> > > > + fn deref(&self) -> &[T] {
> > > > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > > > + // initialized elements of type `T`.
> > > > + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
> > > > + }
> > > > +}
> > > > +
> > > > +impl<T, A> DerefMut for Vec<T, A>
> > > > +where
> > > > + A: Allocator,
> > > > +{
> > > > + #[inline]
> > > > + fn deref_mut(&mut self) -> &mut [T] {
> > > > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > > > + // initialized elements of type `T`.
> > > > + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
> > > > + }
> > > > +}
> > > > +
> > > > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
> > > > +
> > > > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
> > > > +where
> > > > + A: Allocator,
> > > > +{
> > > > + type Output = I::Output;
> > > > +
> > > > + #[inline]
> > > > + fn index(&self, index: I) -> &Self::Output {
> > > > + Index::index(&**self, index)
> > > > + }
> > > > +}
> > > > +
> > > > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
> > > > +where
> > > > + A: Allocator,
> > > > +{
> > > > + #[inline]
> > > > + fn index_mut(&mut self, index: I) -> &mut Self::Output {
> > > > + IndexMut::index_mut(&mut **self, index)
> > > > + }
> > > > +}
> > > > +
> > > > +macro_rules! __impl_slice_eq {
> > > > + ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
> > > > + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
> > > > + where
> > > > + T: PartialEq<U>,
> > > > + $($ty: $bound)?
> > > > + {
> > > > + #[inline]
> > > > + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
> > > > + }
> > > > + }
> > > > +}
> > > > +
> > > > +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
> > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] }
> > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] }
> > > > +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> }
> > > > +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> }
> > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] }
> > > > +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
> > > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
> > > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
> > > > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
> > > > index 6bf77577eae7..bb80a43d20fb 100644
> > > > --- a/rust/kernel/prelude.rs
> > > > +++ b/rust/kernel/prelude.rs
> > > > @@ -14,7 +14,7 @@
> > > > #[doc(no_inline)]
> > > > pub use core::pin::Pin;
> > > >
> > > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox};
> > > > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec};
> > > >
> > > > #[doc(no_inline)]
> > > > pub use alloc::vec::Vec;
> > > > --
> > > > 2.45.2
> > > >
> > >
>
© 2016 - 2026 Red Hat, Inc.