When a group of tasks that access different nodes are scheduled on the
same node, they may encounter bandwidth bottlenecks and access latency.
Thus, numa_aware flag is introduced here, allowing tasks to be
distributed across different nodes to fully utilize the advantage of
multi-node systems.
Signed-off-by: Gang Li <gang.li@linux.dev>
---
include/linux/padata.h | 3 +++
kernel/padata.c | 8 ++++++--
mm/mm_init.c | 1 +
3 files changed, 10 insertions(+), 2 deletions(-)
diff --git a/include/linux/padata.h b/include/linux/padata.h
index 495b16b6b4d72..f79ccd50e7f40 100644
--- a/include/linux/padata.h
+++ b/include/linux/padata.h
@@ -137,6 +137,8 @@ struct padata_shell {
* appropriate for one worker thread to do at once.
* @max_threads: Max threads to use for the job, actual number may be less
* depending on task size and minimum chunk size.
+ * @numa_aware: Dispatch jobs to different nodes. If a node only has memory but
+ * no CPU, dispatch its jobs to a random CPU.
*/
struct padata_mt_job {
void (*thread_fn)(unsigned long start, unsigned long end, void *arg);
@@ -146,6 +148,7 @@ struct padata_mt_job {
unsigned long align;
unsigned long min_chunk;
int max_threads;
+ bool numa_aware;
};
/**
diff --git a/kernel/padata.c b/kernel/padata.c
index 179fb1518070c..1c2b3a337479e 100644
--- a/kernel/padata.c
+++ b/kernel/padata.c
@@ -485,7 +485,7 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
struct padata_work my_work, *pw;
struct padata_mt_job_state ps;
LIST_HEAD(works);
- int nworks;
+ int nworks, nid = 0;
if (job->size == 0)
return;
@@ -517,7 +517,11 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
ps.chunk_size = roundup(ps.chunk_size, job->align);
list_for_each_entry(pw, &works, pw_list)
- queue_work(system_unbound_wq, &pw->pw_work);
+ if (job->numa_aware)
+ queue_work_node((++nid % num_node_state(N_MEMORY)),
+ system_unbound_wq, &pw->pw_work);
+ else
+ queue_work(system_unbound_wq, &pw->pw_work);
/* Use the current thread, which saves starting a workqueue worker. */
padata_work_init(&my_work, padata_mt_helper, &ps, PADATA_WORK_ONSTACK);
diff --git a/mm/mm_init.c b/mm/mm_init.c
index 89dc29f1e6c6f..59fcffddf65a3 100644
--- a/mm/mm_init.c
+++ b/mm/mm_init.c
@@ -2225,6 +2225,7 @@ static int __init deferred_init_memmap(void *data)
.align = PAGES_PER_SECTION,
.min_chunk = PAGES_PER_SECTION,
.max_threads = max_threads,
+ .numa_aware = false,
};
padata_do_multithreaded(&job);
--
2.20.1
On Tue, 2024-01-02 at 21:12 +0800, Gang Li wrote:
> When a group of tasks that access different nodes are scheduled on the
> same node, they may encounter bandwidth bottlenecks and access latency.
>
> Thus, numa_aware flag is introduced here, allowing tasks to be
> distributed across different nodes to fully utilize the advantage of
> multi-node systems.
>
> Signed-off-by: Gang Li <gang.li@linux.dev>
> ---
> include/linux/padata.h | 3 +++
> kernel/padata.c | 8 ++++++--
> mm/mm_init.c | 1 +
> 3 files changed, 10 insertions(+), 2 deletions(-)
>
> diff --git a/include/linux/padata.h b/include/linux/padata.h
> index 495b16b6b4d72..f79ccd50e7f40 100644
> --- a/include/linux/padata.h
> +++ b/include/linux/padata.h
> @@ -137,6 +137,8 @@ struct padata_shell {
> * appropriate for one worker thread to do at once.
> * @max_threads: Max threads to use for the job, actual number may be less
> * depending on task size and minimum chunk size.
> + * @numa_aware: Dispatch jobs to different nodes. If a node only has memory but
> + * no CPU, dispatch its jobs to a random CPU.
> */
> struct padata_mt_job {
> void (*thread_fn)(unsigned long start, unsigned long end, void *arg);
> @@ -146,6 +148,7 @@ struct padata_mt_job {
> unsigned long align;
> unsigned long min_chunk;
> int max_threads;
> + bool numa_aware;
> };
>
> /**
> diff --git a/kernel/padata.c b/kernel/padata.c
> index 179fb1518070c..1c2b3a337479e 100644
> --- a/kernel/padata.c
> +++ b/kernel/padata.c
> @@ -485,7 +485,7 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
> struct padata_work my_work, *pw;
> struct padata_mt_job_state ps;
> LIST_HEAD(works);
> - int nworks;
> + int nworks, nid = 0;
If we always start from 0, we may be biased towards the low numbered node,
and not use high numbered nodes at all. Suggest you do
static nid = 0;
>
> if (job->size == 0)
> return;
> @@ -517,7 +517,11 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
> ps.chunk_size = roundup(ps.chunk_size, job->align);
>
> list_for_each_entry(pw, &works, pw_list)
> - queue_work(system_unbound_wq, &pw->pw_work);
> + if (job->numa_aware)
> + queue_work_node((++nid % num_node_state(N_MEMORY)),
> + system_unbound_wq, &pw->pw_work);
I think we should use nid = next_node(nid, node_states[N_CPU]) instead of
++nid % num_node_state(N_MEMORY). You are picking the next node with CPU
to handle the job.
Tim
> + else
> + queue_work(system_unbound_wq, &pw->pw_work);
>
> /* Use the current thread, which saves starting a workqueue worker. */
> padata_work_init(&my_work, padata_mt_helper, &ps, PADATA_WORK_ONSTACK);
> diff --git a/mm/mm_init.c b/mm/mm_init.c
> index 89dc29f1e6c6f..59fcffddf65a3 100644
> --- a/mm/mm_init.c
> +++ b/mm/mm_init.c
> @@ -2225,6 +2225,7 @@ static int __init deferred_init_memmap(void *data)
> .align = PAGES_PER_SECTION,
> .min_chunk = PAGES_PER_SECTION,
> .max_threads = max_threads,
> + .numa_aware = false,
> };
>
> padata_do_multithreaded(&job);
On 2024/1/12 01:50, Tim Chen wrote:
> On Tue, 2024-01-02 at 21:12 +0800, Gang Li wrote:
>> When a group of tasks that access different nodes are scheduled on the
>> same node, they may encounter bandwidth bottlenecks and access latency.
>>
>> Thus, numa_aware flag is introduced here, allowing tasks to be
>> distributed across different nodes to fully utilize the advantage of
>> multi-node systems.
>>
>> Signed-off-by: Gang Li <gang.li@linux.dev>
>> ---
>> include/linux/padata.h | 3 +++
>> kernel/padata.c | 8 ++++++--
>> mm/mm_init.c | 1 +
>> 3 files changed, 10 insertions(+), 2 deletions(-)
>>
>> diff --git a/include/linux/padata.h b/include/linux/padata.h
>> index 495b16b6b4d72..f79ccd50e7f40 100644
>> --- a/include/linux/padata.h
>> +++ b/include/linux/padata.h
>> @@ -137,6 +137,8 @@ struct padata_shell {
>> * appropriate for one worker thread to do at once.
>> * @max_threads: Max threads to use for the job, actual number may be less
>> * depending on task size and minimum chunk size.
>> + * @numa_aware: Dispatch jobs to different nodes. If a node only has memory but
>> + * no CPU, dispatch its jobs to a random CPU.
>> */
>> struct padata_mt_job {
>> void (*thread_fn)(unsigned long start, unsigned long end, void *arg);
>> @@ -146,6 +148,7 @@ struct padata_mt_job {
>> unsigned long align;
>> unsigned long min_chunk;
>> int max_threads;
>> + bool numa_aware;
>> };
>>
>> /**
>> diff --git a/kernel/padata.c b/kernel/padata.c
>> index 179fb1518070c..1c2b3a337479e 100644
>> --- a/kernel/padata.c
>> +++ b/kernel/padata.c
>> @@ -485,7 +485,7 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
>> struct padata_work my_work, *pw;
>> struct padata_mt_job_state ps;
>> LIST_HEAD(works);
>> - int nworks;
>> + int nworks, nid = 0;
>
> If we always start from 0, we may be biased towards the low numbered node,
> and not use high numbered nodes at all. Suggest you do
> static nid = 0;
>
When we use `static`, if there are multiple parallel calls to
`padata_do_multithreaded`, it may result in an uneven distribution of
tasks for each padata_do_multithreaded.
We can make the following modifications to address this issue.
```
diff --git a/kernel/padata.c b/kernel/padata.c
index 1c2b3a337479e..925e48df6dd8d 100644
--- a/kernel/padata.c
+++ b/kernel/padata.c
@@ -485,7 +485,8 @@ void __init padata_do_multithreaded(struct
padata_mt_job *job)
struct padata_work my_work, *pw;
struct padata_mt_job_state ps;
LIST_HEAD(works);
- int nworks, nid = 0;
+ int nworks, nid;
+ static volatile int global_nid = 0;
if (job->size == 0)
return;
@@ -516,12 +517,15 @@ void __init padata_do_multithreaded(struct
padata_mt_job *job)
ps.chunk_size = max(ps.chunk_size, job->min_chunk);
ps.chunk_size = roundup(ps.chunk_size, job->align);
+ nid = global_nid;
list_for_each_entry(pw, &works, pw_list)
- if (job->numa_aware)
- queue_work_node((++nid % num_node_state(N_MEMORY)),
- system_unbound_wq, &pw->pw_work);
- else
+ if (job->numa_aware) {
+ queue_work_node(nid, system_unbound_wq,
&pw->pw_work);
+ nid = next_node(nid, node_states[N_CPU]);
+ } else
queue_work(system_unbound_wq, &pw->pw_work);
+ if (job->numa_aware)
+ global_nid = nid;
/* Use the current thread, which saves starting a workqueue
worker. */
padata_work_init(&my_work, padata_mt_helper, &ps,
PADATA_WORK_ONSTACK);
```
>>
>> if (job->size == 0)
>> return;
>> @@ -517,7 +517,11 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
>> ps.chunk_size = roundup(ps.chunk_size, job->align);
>>
>> list_for_each_entry(pw, &works, pw_list)
>> - queue_work(system_unbound_wq, &pw->pw_work);
>> + if (job->numa_aware)
>> + queue_work_node((++nid % num_node_state(N_MEMORY)),
>> + system_unbound_wq, &pw->pw_work);
>
> I think we should use nid = next_node(nid, node_states[N_CPU]) instead of
> ++nid % num_node_state(N_MEMORY). You are picking the next node with CPU
> to handle the job.
>
> Tim
>
I agree.
On Fri, 2024-01-12 at 15:09 +0800, Gang Li wrote:
> On 2024/1/12 01:50, Tim Chen wrote:
> > On Tue, 2024-01-02 at 21:12 +0800, Gang Li wrote:
> > > When a group of tasks that access different nodes are scheduled on the
> > > same node, they may encounter bandwidth bottlenecks and access latency.
> > >
> > > Thus, numa_aware flag is introduced here, allowing tasks to be
> > > distributed across different nodes to fully utilize the advantage of
> > > multi-node systems.
> > >
> > > Signed-off-by: Gang Li <gang.li@linux.dev>
> > > ---
> > > include/linux/padata.h | 3 +++
> > > kernel/padata.c | 8 ++++++--
> > > mm/mm_init.c | 1 +
> > > 3 files changed, 10 insertions(+), 2 deletions(-)
> > >
> > > diff --git a/include/linux/padata.h b/include/linux/padata.h
> > > index 495b16b6b4d72..f79ccd50e7f40 100644
> > > --- a/include/linux/padata.h
> > > +++ b/include/linux/padata.h
> > > @@ -137,6 +137,8 @@ struct padata_shell {
> > > * appropriate for one worker thread to do at once.
> > > * @max_threads: Max threads to use for the job, actual number may be less
> > > * depending on task size and minimum chunk size.
> > > + * @numa_aware: Dispatch jobs to different nodes. If a node only has memory but
> > > + * no CPU, dispatch its jobs to a random CPU.
> > > */
> > > struct padata_mt_job {
> > > void (*thread_fn)(unsigned long start, unsigned long end, void *arg);
> > > @@ -146,6 +148,7 @@ struct padata_mt_job {
> > > unsigned long align;
> > > unsigned long min_chunk;
> > > int max_threads;
> > > + bool numa_aware;
> > > };
> > >
> > > /**
> > > diff --git a/kernel/padata.c b/kernel/padata.c
> > > index 179fb1518070c..1c2b3a337479e 100644
> > > --- a/kernel/padata.c
> > > +++ b/kernel/padata.c
> > > @@ -485,7 +485,7 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
> > > struct padata_work my_work, *pw;
> > > struct padata_mt_job_state ps;
> > > LIST_HEAD(works);
> > > - int nworks;
> > > + int nworks, nid = 0;
> >
> > If we always start from 0, we may be biased towards the low numbered node,
> > and not use high numbered nodes at all. Suggest you do
> > static nid = 0;
> >
>
> When we use `static`, if there are multiple parallel calls to
> `padata_do_multithreaded`, it may result in an uneven distribution of
> tasks for each padata_do_multithreaded.
>
> We can make the following modifications to address this issue.
>
> ```
> diff --git a/kernel/padata.c b/kernel/padata.c
> index 1c2b3a337479e..925e48df6dd8d 100644
> --- a/kernel/padata.c
> +++ b/kernel/padata.c
> @@ -485,7 +485,8 @@ void __init padata_do_multithreaded(struct
> padata_mt_job *job)
> struct padata_work my_work, *pw;
> struct padata_mt_job_state ps;
> LIST_HEAD(works);
> - int nworks, nid = 0;
> + int nworks, nid;
> + static volatile int global_nid = 0;
>
> if (job->size == 0)
> return;
> @@ -516,12 +517,15 @@ void __init padata_do_multithreaded(struct
> padata_mt_job *job)
> ps.chunk_size = max(ps.chunk_size, job->min_chunk);
> ps.chunk_size = roundup(ps.chunk_size, job->align);
>
> + nid = global_nid;
> list_for_each_entry(pw, &works, pw_list)
> - if (job->numa_aware)
> - queue_work_node((++nid % num_node_state(N_MEMORY)),
> - system_unbound_wq, &pw->pw_work);
> - else
> + if (job->numa_aware) {
> + queue_work_node(nid, system_unbound_wq,
> &pw->pw_work);
> + nid = next_node(nid, node_states[N_CPU]);
> + } else
> queue_work(system_unbound_wq, &pw->pw_work);
> + if (job->numa_aware)
> + global_nid = nid;
Thinking more about it, there could still be multiple threads working
at the same time with stale global_nid. We should probably do a compare
exchange of global_nid with new nid only if the global nid was unchanged.
Otherwise we should go to the next node with the changed global nid before
we queue the job.
Tim
>
> /* Use the current thread, which saves starting a workqueue
> worker. */
> padata_work_init(&my_work, padata_mt_helper, &ps,
> PADATA_WORK_ONSTACK);
> ```
>
>
> > >
> > > if (job->size == 0)
> > > return;
> > > @@ -517,7 +517,11 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
> > > ps.chunk_size = roundup(ps.chunk_size, job->align);
> > >
> > > list_for_each_entry(pw, &works, pw_list)
> > > - queue_work(system_unbound_wq, &pw->pw_work);
> > > + if (job->numa_aware)
> > > + queue_work_node((++nid % num_node_state(N_MEMORY)),
> > > + system_unbound_wq, &pw->pw_work);
> >
> > I think we should use nid = next_node(nid, node_states[N_CPU]) instead of
> > ++nid % num_node_state(N_MEMORY). You are picking the next node with CPU
> > to handle the job.
> >
> > Tim
> >
>
> I agree.
On 2024/1/13 02:27, Tim Chen wrote:
> On Fri, 2024-01-12 at 15:09 +0800, Gang Li wrote:
>> On 2024/1/12 01:50, Tim Chen wrote:
>>> On Tue, 2024-01-02 at 21:12 +0800, Gang Li wrote:
>>>> When a group of tasks that access different nodes are scheduled on the
>>>> same node, they may encounter bandwidth bottlenecks and access latency.
>>>>
>>>> Thus, numa_aware flag is introduced here, allowing tasks to be
>>>> distributed across different nodes to fully utilize the advantage of
>>>> multi-node systems.
>>>>
>>>> Signed-off-by: Gang Li <gang.li@linux.dev>
>>>> ---
>>>> include/linux/padata.h | 3 +++
>>>> kernel/padata.c | 8 ++++++--
>>>> mm/mm_init.c | 1 +
>>>> 3 files changed, 10 insertions(+), 2 deletions(-)
>>>>
>>>> diff --git a/include/linux/padata.h b/include/linux/padata.h
>>>> index 495b16b6b4d72..f79ccd50e7f40 100644
>>>> --- a/include/linux/padata.h
>>>> +++ b/include/linux/padata.h
>>>> @@ -137,6 +137,8 @@ struct padata_shell {
>>>> * appropriate for one worker thread to do at once.
>>>> * @max_threads: Max threads to use for the job, actual number may be less
>>>> * depending on task size and minimum chunk size.
>>>> + * @numa_aware: Dispatch jobs to different nodes. If a node only has memory but
>>>> + * no CPU, dispatch its jobs to a random CPU.
>>>> */
>>>> struct padata_mt_job {
>>>> void (*thread_fn)(unsigned long start, unsigned long end, void *arg);
>>>> @@ -146,6 +148,7 @@ struct padata_mt_job {
>>>> unsigned long align;
>>>> unsigned long min_chunk;
>>>> int max_threads;
>>>> + bool numa_aware;
>>>> };
>>>>
>>>> /**
>>>> diff --git a/kernel/padata.c b/kernel/padata.c
>>>> index 179fb1518070c..1c2b3a337479e 100644
>>>> --- a/kernel/padata.c
>>>> +++ b/kernel/padata.c
>>>> @@ -485,7 +485,7 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
>>>> struct padata_work my_work, *pw;
>>>> struct padata_mt_job_state ps;
>>>> LIST_HEAD(works);
>>>> - int nworks;
>>>> + int nworks, nid = 0;
>>>
>>> If we always start from 0, we may be biased towards the low numbered node,
>>> and not use high numbered nodes at all. Suggest you do
>>> static nid = 0;
>>>
>>
>> When we use `static`, if there are multiple parallel calls to
>> `padata_do_multithreaded`, it may result in an uneven distribution of
>> tasks for each padata_do_multithreaded.
>>
>> We can make the following modifications to address this issue.
>>
>> ```
>> diff --git a/kernel/padata.c b/kernel/padata.c
>> index 1c2b3a337479e..925e48df6dd8d 100644
>> --- a/kernel/padata.c
>> +++ b/kernel/padata.c
>> @@ -485,7 +485,8 @@ void __init padata_do_multithreaded(struct
>> padata_mt_job *job)
>> struct padata_work my_work, *pw;
>> struct padata_mt_job_state ps;
>> LIST_HEAD(works);
>> - int nworks, nid = 0;
>> + int nworks, nid;
>> + static volatile int global_nid = 0;
>>
>> if (job->size == 0)
>> return;
>> @@ -516,12 +517,15 @@ void __init padata_do_multithreaded(struct
>> padata_mt_job *job)
>> ps.chunk_size = max(ps.chunk_size, job->min_chunk);
>> ps.chunk_size = roundup(ps.chunk_size, job->align);
>>
>> + nid = global_nid;
>> list_for_each_entry(pw, &works, pw_list)
>> - if (job->numa_aware)
>> - queue_work_node((++nid % num_node_state(N_MEMORY)),
>> - system_unbound_wq, &pw->pw_work);
>> - else
>> + if (job->numa_aware) {
>> + queue_work_node(nid, system_unbound_wq,
>> &pw->pw_work);
>> + nid = next_node(nid, node_states[N_CPU]);
>> + } else
>> queue_work(system_unbound_wq, &pw->pw_work);
>> + if (job->numa_aware)
>> + global_nid = nid;
>
> Thinking more about it, there could still be multiple threads working
> at the same time with stale global_nid. We should probably do a compare
> exchange of global_nid with new nid only if the global nid was unchanged.
> Otherwise we should go to the next node with the changed global nid before
> we queue the job.
>
> Tim
>
How about:
```
nid = global_nid;
list_for_each_entry(pw, &works, pw_list)
if (job->numa_aware) {
int old_node = nid;
queue_work_node(nid, system_unbound_wq, &pw->pw_work);
nid = next_node(nid, node_states[N_CPU]);
cmpxchg(&global_nid, old_node, nid);
} else
queue_work(system_unbound_wq, &pw->pw_work);
```
On Mon, 2024-01-15 at 16:57 +0800, Gang Li wrote:
>
> On 2024/1/13 02:27, Tim Chen wrote:
> > On Fri, 2024-01-12 at 15:09 +0800, Gang Li wrote:
> > > On 2024/1/12 01:50, Tim Chen wrote:
> > > > On Tue, 2024-01-02 at 21:12 +0800, Gang Li wrote:
> > > > > When a group of tasks that access different nodes are scheduled on the
> > > > > same node, they may encounter bandwidth bottlenecks and access latency.
> > > > >
> > > > > Thus, numa_aware flag is introduced here, allowing tasks to be
> > > > > distributed across different nodes to fully utilize the advantage of
> > > > > multi-node systems.
> > > > >
> > > > > Signed-off-by: Gang Li <gang.li@linux.dev>
> > > > > ---
> > > > > include/linux/padata.h | 3 +++
> > > > > kernel/padata.c | 8 ++++++--
> > > > > mm/mm_init.c | 1 +
> > > > > 3 files changed, 10 insertions(+), 2 deletions(-)
> > > > >
> > > > > diff --git a/include/linux/padata.h b/include/linux/padata.h
> > > > > index 495b16b6b4d72..f79ccd50e7f40 100644
> > > > > --- a/include/linux/padata.h
> > > > > +++ b/include/linux/padata.h
> > > > > @@ -137,6 +137,8 @@ struct padata_shell {
> > > > > * appropriate for one worker thread to do at once.
> > > > > * @max_threads: Max threads to use for the job, actual number may be less
> > > > > * depending on task size and minimum chunk size.
> > > > > + * @numa_aware: Dispatch jobs to different nodes. If a node only has memory but
> > > > > + * no CPU, dispatch its jobs to a random CPU.
> > > > > */
> > > > > struct padata_mt_job {
> > > > > void (*thread_fn)(unsigned long start, unsigned long end, void *arg);
> > > > > @@ -146,6 +148,7 @@ struct padata_mt_job {
> > > > > unsigned long align;
> > > > > unsigned long min_chunk;
> > > > > int max_threads;
> > > > > + bool numa_aware;
> > > > > };
> > > > >
> > > > > /**
> > > > > diff --git a/kernel/padata.c b/kernel/padata.c
> > > > > index 179fb1518070c..1c2b3a337479e 100644
> > > > > --- a/kernel/padata.c
> > > > > +++ b/kernel/padata.c
> > > > > @@ -485,7 +485,7 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
> > > > > struct padata_work my_work, *pw;
> > > > > struct padata_mt_job_state ps;
> > > > > LIST_HEAD(works);
> > > > > - int nworks;
> > > > > + int nworks, nid = 0;
> > > >
> > > > If we always start from 0, we may be biased towards the low numbered node,
> > > > and not use high numbered nodes at all. Suggest you do
> > > > static nid = 0;
> > > >
> > >
> > > When we use `static`, if there are multiple parallel calls to
> > > `padata_do_multithreaded`, it may result in an uneven distribution of
> > > tasks for each padata_do_multithreaded.
> > >
> > > We can make the following modifications to address this issue.
> > >
> > > ```
> > > diff --git a/kernel/padata.c b/kernel/padata.c
> > > index 1c2b3a337479e..925e48df6dd8d 100644
> > > --- a/kernel/padata.c
> > > +++ b/kernel/padata.c
> > > @@ -485,7 +485,8 @@ void __init padata_do_multithreaded(struct
> > > padata_mt_job *job)
> > > struct padata_work my_work, *pw;
> > > struct padata_mt_job_state ps;
> > > LIST_HEAD(works);
> > > - int nworks, nid = 0;
> > > + int nworks, nid;
> > > + static volatile int global_nid = 0;
> > >
> > > if (job->size == 0)
> > > return;
> > > @@ -516,12 +517,15 @@ void __init padata_do_multithreaded(struct
> > > padata_mt_job *job)
> > > ps.chunk_size = max(ps.chunk_size, job->min_chunk);
> > > ps.chunk_size = roundup(ps.chunk_size, job->align);
> > >
> > > + nid = global_nid;
> > > list_for_each_entry(pw, &works, pw_list)
> > > - if (job->numa_aware)
> > > - queue_work_node((++nid % num_node_state(N_MEMORY)),
> > > - system_unbound_wq, &pw->pw_work);
> > > - else
> > > + if (job->numa_aware) {
> > > + queue_work_node(nid, system_unbound_wq,
> > > &pw->pw_work);
> > > + nid = next_node(nid, node_states[N_CPU]);
> > > + } else
> > > queue_work(system_unbound_wq, &pw->pw_work);
> > > + if (job->numa_aware)
> > > + global_nid = nid;
> >
> > Thinking more about it, there could still be multiple threads working
> > at the same time with stale global_nid. We should probably do a compare
> > exchange of global_nid with new nid only if the global nid was unchanged.
> > Otherwise we should go to the next node with the changed global nid before
> > we queue the job.
> >
> > Tim
> >
> How about:
> ```
> nid = global_nid;
> list_for_each_entry(pw, &works, pw_list)
> if (job->numa_aware) {
> int old_node = nid;
> queue_work_node(nid, system_unbound_wq, &pw->pw_work);
> nid = next_node(nid, node_states[N_CPU]);
> cmpxchg(&global_nid, old_node, nid);
> } else
> queue_work(system_unbound_wq, &pw->pw_work);
>
> ```
>
I am thinking something like
static volatile atomic_t last_used_nid;
list_for_each_entry(pw, &works, pw_list)
if (job->numa_aware) {
int old_node = atomic_read(&last_used_nid);
do {
nid = next_node_in(old_node, node_states[N_CPU]);
} while (!atomic_try_cmpxchg(&last_used_nid, &old_node, nid));
queue_work_node(nid, system_unbound_wq, &pw->pw_work);
} else {
queue_work(system_unbound_wq, &pw->pw_work);
}
Note that we need to use next_node_in so we'll wrap around the node mask.
Tim
Hi Tim,
On 2024/1/18 06:14, Tim Chen wrote:
> On Mon, 2024-01-15 at 16:57 +0800, Gang Li wrote:
>> How about:
>> ```
>> nid = global_nid;
>> list_for_each_entry(pw, &works, pw_list)
>> if (job->numa_aware) {
>> int old_node = nid;
>> queue_work_node(nid, system_unbound_wq, &pw->pw_work);
>> nid = next_node(nid, node_states[N_CPU]);
>> cmpxchg(&global_nid, old_node, nid);
>> } else
>> queue_work(system_unbound_wq, &pw->pw_work);
>>
>> ```
>>
My original idea was to have all tasks from a single
padata_do_multithreaded distributed continuously across NUMA nodes.
In that case, the task distribution would be predictable for a single
padata_do_multithreaded call.
>
> I am thinking something like
>
> static volatile atomic_t last_used_nid;
>
> list_for_each_entry(pw, &works, pw_list)
> if (job->numa_aware) {
> int old_node = atomic_read(&last_used_nid);
>
> do {
> nid = next_node_in(old_node, node_states[N_CPU]);
> } while (!atomic_try_cmpxchg(&last_used_nid, &old_node, nid));
However, having the tasks from all parallel padata_do_multithreaded
globally distributed across NUMA nodes is also fine by me.
I don't have a strong preference.
> queue_work_node(nid, system_unbound_wq, &pw->pw_work);
> } else {
> queue_work(system_unbound_wq, &pw->pw_work);
> }
>
> Note that we need to use next_node_in so we'll wrap around the node mask.
>
© 2016 - 2025 Red Hat, Inc.