arch/arm64/include/asm/kvm_asm.h | 3 + arch/arm64/include/asm/kvm_host.h | 3 + arch/arm64/include/asm/kvm_pgtable.h | 10 +++ arch/arm64/include/asm/tlbflush.h | 108 ++++++++++++++------------- arch/arm64/kvm/hyp/nvhe/hyp-main.c | 11 +++ arch/arm64/kvm/hyp/nvhe/tlb.c | 30 ++++++++ arch/arm64/kvm/hyp/pgtable.c | 90 +++++++++++++++++++--- arch/arm64/kvm/hyp/vhe/tlb.c | 28 +++++++ arch/arm64/kvm/mmu.c | 9 ++- 9 files changed, 228 insertions(+), 64 deletions(-)
In certain code paths, KVM/ARM currently invalidates the entire VM's page-tables instead of just invalidating a necessary range. For example, when collapsing a table PTE to a block PTE, instead of iterating over each PTE and flushing them, KVM uses 'vmalls12e1is' TLBI operation to flush all the entries. This is inefficient since the guest would have to refill the TLBs again, even for the addresses that aren't covered by the table entry. The performance impact would scale poorly if many addresses in the VM is going through this remapping. For architectures that implement FEAT_TLBIRANGE, KVM can replace such inefficient paths by performing the invalidations only on the range of addresses that are in scope. This series tries to achieve the same in the areas of stage-2 map, unmap and write-protecting the pages. Patch-1 refactors the core arm64's __flush_tlb_range() to be used by other entities. Patch-2,3 adds a range-based TLBI mechanism for KVM (VHE and nVHE). Patch-4 implements the kvm_arch_flush_remote_tlbs_range() for arm64. Patch-5 aims to flush only the memslot that undergoes a write-protect, instead of the entire VM. Patch-6 operates on stage2_try_break_pte() to use the range based TLBI instructions when collapsing a table entry. The map path is the immediate consumer of this when KVM remaps a table entry into a block. Patch-7 modifies the stage-2 unmap path in which, if the system supports FEAT_TLBIRANGE, the TLB invalidations are skipped during the page-table. walk. Instead it's done in one go after the entire walk is finished. The series is based off of upstream v6.4-rc2, and applied David Matlack's common API for TLB invalidations[1] on top. The performance evaluation was done on a hardware that supports FEAT_TLBIRANGE, on a VHE configuration, using a modified kvm_page_table_test. The modified version updates the guest code in the ADJUST_MAPPINGS case to not only access this page but also to access up to 512 pages backwards for every new page it iterates through. This is done to test the effect of TLBI misses after KVM has handled a fault. The series captures the impact in the map and unmap paths as described above. $ kvm_page_table_test -m 2 -v 128 -s anonymous_hugetlb_2mb -b $i +--------+------------------------------+------------------------------+ | mem_sz | ADJUST_MAPPINGS (s) | Unmap VM (s) | | (GB) | Baseline | Baseline + series | Baseline | Baseline + series | +--------+----------|-------------------+------------------------------+ | 1 | 3.44 | 2.97 | 0.007 | 0.005 | | 2 | 5.56 | 5.63 | 0.010 | 0.006 | | 4 | 11.03 | 10.44 | 0.015 | 0.008 | | 8 | 24.54 | 19.00 | 0.024 | 0.011 | | 16 | 40.16 | 36.83 | 0.041 | 0.018 | | 32 | 75.76 | 73.84 | 0.074 | 0.029 | | 64 | 151.58 | 152.62 | 0.148 | 0.050 | | 128 | 330.42 | 306.86 | 0.280 | 0.090 | +--------+----------+-------------------+----------+-------------------+ $ kvm_page_table_test -m 2 -b 128G -s anonymous_hugetlb_2mb -v $i +--------+------------------------------+ | vCPUs | ADJUST_MAPPINGS (s) | | | Baseline | Baseline + series | +--------+----------|-------------------+ | 1 | 138.69 | 135.58 | | 2 | 138.77 | 137.54 | | 4 | 162.57 | 135.82 | | 8 | 154.92 | 143.67 | | 16 | 122.02 | 118.86 | | 32 | 119.99 | 118.81 | | 64 | 190.70 | 169.36 | | 128 | 330.42 | 306.86 | +--------+----------+-------------------+ For the ADJUST_MAPPINGS cases, which maps back the 4K table entries to 2M hugepages, the series sees an average improvement of ~7%. For unmapping 2M hugepages, we see at least a 3x improvement. $ kvm_page_table_test -m 2 -b $i +--------+------------------------------+ | mem_sz | Unmap VM (s) | | (GB) | Baseline | Baseline + series | +--------+------------------------------+ | 1 | 0.52 | 0.13 | | 2 | 1.03 | 0.25 | | 4 | 2.04 | 0.47 | | 8 | 4.05 | 0.94 | | 16 | 8.11 | 1.82 | | 32 | 16.11 | 3.69 | | 64 | 32.35 | 7.22 | | 128 | 64.66 | 14.69 | +--------+----------+-------------------+ The series sees an average gain of 4x when the guest backed by PAGE_SIZE (4K) pages. v5: Thank you, Marc and Oliver for the comments - Introduced a helper, kvm_tlb_flush_vmid_range(), to handle the decision of using range-based TLBI instructions or invalidating the entire VMID, rather than depending on __kvm_tlb_flush_vmid_range() for it. - kvm_tlb_flush_vmid_range() splits the range-based invalidations if the requested range exceeds MAX_TLBI_RANGE_PAGES. - All the users in need of invalidating the TLB upon a range now depends on kvm_tlb_flush_vmid_range() rather than directly on __kvm_tlb_flush_vmid_range(). - stage2_unmap_defer_tlb_flush() introduces a WARN_ON() to track if there's any change in TLBIRANGE or FWB support during the unmap process as the features are based on alternative patching and the TLBI operations solely depend on this check. - Corrected an incorrect hunk being present on v4's patch-3. - Updated the patches changelog and code comments as per the suggestions. v4: https://lore.kernel.org/all/20230519005231.3027912-1-rananta@google.com/ Thanks again, Oliver for all the comments - Updated the __kvm_tlb_flush_vmid_range() implementation for nVHE to adjust with the modfied __tlb_switch_to_guest() that accepts a new 'bool nsh' arg. - Renamed stage2_put_pte() to stage2_unmap_put_pte() and removed the 'skip_flush' argument. - Defined stage2_unmap_defer_tlb_flush() to check if the PTE flushes can be deferred during the unmap table walk. It's being called from stage2_unmap_put_pte() and kvm_pgtable_stage2_unmap(). - Got rid of the 'struct stage2_unmap_data'. v3: https://lore.kernel.org/all/20230414172922.812640-1-rananta@google.com/ Thanks, Oliver for all the suggestions. - The core flush API (__kvm_tlb_flush_vmid_range()) now checks if the system support FEAT_TLBIRANGE or not, thus elimiating the redundancy in the upper layers. - If FEAT_TLBIRANGE is not supported, the implementation falls back to invalidating all the TLB entries with the VMID, instead of doing an iterative flush for the range. - The kvm_arch_flush_remote_tlbs_range() doesn't return -EOPNOTSUPP if the system doesn't implement FEAT_TLBIRANGE. It depends on __kvm_tlb_flush_vmid_range() to do take care of the decisions and return 0 regardless of the underlying feature support. - __kvm_tlb_flush_vmid_range() doesn't take 'level' as input to calculate the 'stride'. Instead, it always assumes PAGE_SIZE. - Fast unmap path is eliminated. Instead, the existing unmap walker is modified to skip the TLBIs during the walk, and do it all at once after the walk, using the range-based instructions. v2: https://lore.kernel.org/all/20230206172340.2639971-1-rananta@google.com/ - Rebased the series on top of David Matlack's series for common TLB invalidation API[1]. - Implement kvm_arch_flush_remote_tlbs_range() for arm64, by extending the support introduced by [1]. - Use kvm_flush_remote_tlbs_memslot() introduced by [1] to flush only the current memslot after write-protect. - Modified the __kvm_tlb_flush_range() macro to accepts 'level' as an argument to calculate the 'stride' instead of just using PAGE_SIZE. - Split the patch that introduces the range-based TLBI to KVM and the implementation of IPA-based invalidation into its own patches. - Dropped the patch that tries to optimize the mmu notifiers paths. - Rename the function kvm_table_pte_flush() to kvm_pgtable_stage2_flush_range(), and accept the range of addresses to flush. [Oliver] - Drop the 'tlb_level' argument for stage2_try_break_pte() and directly pass '0' as 'tlb_level' to kvm_pgtable_stage2_flush_range(). [Oliver] v1: https://lore.kernel.org/all/20230109215347.3119271-1-rananta@google.com/ Thank you. Raghavendra [1]: https://lore.kernel.org/linux-arm-kernel/20230126184025.2294823-1-dmatlack@google.com/ Raghavendra Rao Ananta (7): arm64: tlb: Refactor the core flush algorithm of __flush_tlb_range KVM: arm64: Implement __kvm_tlb_flush_vmid_range() KVM: arm64: Define kvm_tlb_flush_vmid_range() KVM: arm64: Implement kvm_arch_flush_remote_tlbs_range() KVM: arm64: Flush only the memslot after write-protect KVM: arm64: Invalidate the table entries upon a range KVM: arm64: Use TLBI range-based intructions for unmap arch/arm64/include/asm/kvm_asm.h | 3 + arch/arm64/include/asm/kvm_host.h | 3 + arch/arm64/include/asm/kvm_pgtable.h | 10 +++ arch/arm64/include/asm/tlbflush.h | 108 ++++++++++++++------------- arch/arm64/kvm/hyp/nvhe/hyp-main.c | 11 +++ arch/arm64/kvm/hyp/nvhe/tlb.c | 30 ++++++++ arch/arm64/kvm/hyp/pgtable.c | 90 +++++++++++++++++++--- arch/arm64/kvm/hyp/vhe/tlb.c | 28 +++++++ arch/arm64/kvm/mmu.c | 9 ++- 9 files changed, 228 insertions(+), 64 deletions(-) -- 2.41.0.rc0.172.g3f132b7071-goog
Hi Raghavendra, On Tue, Jun 06, 2023 at 07:28:51PM +0000, Raghavendra Rao Ananta wrote: > The series is based off of upstream v6.4-rc2, and applied David > Matlack's common API for TLB invalidations[1] on top. Sorry I didn't spot the dependency earlier, but this isn't helpful TBH. David's series was partially applied, and what remains no longer cleanly applies to the base you suggest. Independent of that, my *strong* preference is that you just send out a series containing your patches as well as David's. Coordinating dependent efforts is the only sane thing to do. Also, those patches are 5 months old at this point which is ancient history. > [1]: > https://lore.kernel.org/linux-arm-kernel/20230126184025.2294823-1-dmatlack@google.com/ -- Thanks, Oliver
On Wed, Jun 14, 2023 at 5:19 AM Oliver Upton <oliver.upton@linux.dev> wrote: > > Hi Raghavendra, > > On Tue, Jun 06, 2023 at 07:28:51PM +0000, Raghavendra Rao Ananta wrote: > > The series is based off of upstream v6.4-rc2, and applied David > > Matlack's common API for TLB invalidations[1] on top. > > Sorry I didn't spot the dependency earlier, but this isn't helpful TBH. > > David's series was partially applied, and what remains no longer cleanly > applies to the base you suggest. Independent of that, my *strong* > preference is that you just send out a series containing your patches as > well as David's. Coordinating dependent efforts is the only sane thing > to do. Also, those patches are 5 months old at this point which is > ancient history. > Would you rather prefer I detach this series from David's as I'm not sure what his plans are for future versions? On the other hand, the patches seem simple enough to rebase and give another shot at review, but may end up delaying this series. WDYT? Thank you. Raghavendra > > [1]: > > https://lore.kernel.org/linux-arm-kernel/20230126184025.2294823-1-dmatlack@google.com/ > > -- > Thanks, > Oliver
+cc Sean On Wed, Jun 14, 2023 at 06:57:01PM -0700, Raghavendra Rao Ananta wrote: > On Wed, Jun 14, 2023 at 5:19 AM Oliver Upton <oliver.upton@linux.dev> wrote: > > > > Hi Raghavendra, > > > > On Tue, Jun 06, 2023 at 07:28:51PM +0000, Raghavendra Rao Ananta wrote: > > > The series is based off of upstream v6.4-rc2, and applied David > > > Matlack's common API for TLB invalidations[1] on top. > > > > Sorry I didn't spot the dependency earlier, but this isn't helpful TBH. > > > > David's series was partially applied, and what remains no longer cleanly > > applies to the base you suggest. Independent of that, my *strong* > > preference is that you just send out a series containing your patches as > > well as David's. Coordinating dependent efforts is the only sane thing > > to do. Also, those patches are 5 months old at this point which is > > ancient history. > > > Would you rather prefer I detach this series from David's as I'm not > sure what his plans are for future versions? > On the other hand, the patches seem simple enough to rebase and give > another shot at review, but may end up delaying this series. > WDYT? In cases such as this you'd typically coordinate with the other developer to pick up their changes as part of your series. Especially for this case -- David's refactoring is _pointless_ without another user for that code (i.e. arm64). As fun as it might be to antagonize Sean, that series pokes x86 and I'd like an ack from on it. So, please post a combined series that applies cleanly to an early 6.4 rc of your choosing, and cc all affected reviewers/maintainers. -- Thanks, Oliver
On Thu, Jun 15, 2023, Oliver Upton wrote: > +cc Sean > > On Wed, Jun 14, 2023 at 06:57:01PM -0700, Raghavendra Rao Ananta wrote: > > On Wed, Jun 14, 2023 at 5:19 AM Oliver Upton <oliver.upton@linux.dev> wrote: > > > > > > Hi Raghavendra, > > > > > > On Tue, Jun 06, 2023 at 07:28:51PM +0000, Raghavendra Rao Ananta wrote: > > > > The series is based off of upstream v6.4-rc2, and applied David > > > > Matlack's common API for TLB invalidations[1] on top. > > > > > > Sorry I didn't spot the dependency earlier, but this isn't helpful TBH. > > > > > > David's series was partially applied, and what remains no longer cleanly > > > applies to the base you suggest. Independent of that, my *strong* > > > preference is that you just send out a series containing your patches as > > > well as David's. Coordinating dependent efforts is the only sane thing > > > to do. Also, those patches are 5 months old at this point which is > > > ancient history. > > > > > Would you rather prefer I detach this series from David's as I'm not > > sure what his plans are for future versions? > > On the other hand, the patches seem simple enough to rebase and give > > another shot at review, but may end up delaying this series. > > WDYT? > > In cases such as this you'd typically coordinate with the other > developer to pick up their changes as part of your series. Especially > for this case -- David's refactoring is _pointless_ without another > user for that code (i.e. arm64). As fun as it might be to antagonize > Sean, that series pokes x86 and I'd like an ack from on it. > > So, please post a combined series that applies cleanly to an early 6.4 > rc of your choosing, and cc all affected reviewers/maintainers. +1
Allright, I'll resend the series along with David's patches. Thank you. Raghavendra On Thu, Jun 15, 2023 at 7:14 AM Sean Christopherson <seanjc@google.com> wrote: > > On Thu, Jun 15, 2023, Oliver Upton wrote: > > +cc Sean > > > > On Wed, Jun 14, 2023 at 06:57:01PM -0700, Raghavendra Rao Ananta wrote: > > > On Wed, Jun 14, 2023 at 5:19 AM Oliver Upton <oliver.upton@linux.dev> wrote: > > > > > > > > Hi Raghavendra, > > > > > > > > On Tue, Jun 06, 2023 at 07:28:51PM +0000, Raghavendra Rao Ananta wrote: > > > > > The series is based off of upstream v6.4-rc2, and applied David > > > > > Matlack's common API for TLB invalidations[1] on top. > > > > > > > > Sorry I didn't spot the dependency earlier, but this isn't helpful TBH. > > > > > > > > David's series was partially applied, and what remains no longer cleanly > > > > applies to the base you suggest. Independent of that, my *strong* > > > > preference is that you just send out a series containing your patches as > > > > well as David's. Coordinating dependent efforts is the only sane thing > > > > to do. Also, those patches are 5 months old at this point which is > > > > ancient history. > > > > > > > Would you rather prefer I detach this series from David's as I'm not > > > sure what his plans are for future versions? > > > On the other hand, the patches seem simple enough to rebase and give > > > another shot at review, but may end up delaying this series. > > > WDYT? > > > > In cases such as this you'd typically coordinate with the other > > developer to pick up their changes as part of your series. Especially > > for this case -- David's refactoring is _pointless_ without another > > user for that code (i.e. arm64). As fun as it might be to antagonize > > Sean, that series pokes x86 and I'd like an ack from on it. > > > > So, please post a combined series that applies cleanly to an early 6.4 > > rc of your choosing, and cc all affected reviewers/maintainers. > > +1
© 2016 - 2026 Red Hat, Inc.