kernel/time/ntp.c | 175 +++++++++++++++++++++------------------------ 1 file changed, 85 insertions(+), 90 deletions(-)
The following commit has been merged into the timers/core branch of tip:
Commit-ID: bee18a2301f97465a464176767f3a3a64f900d93
Gitweb: https://git.kernel.org/tip/bee18a2301f97465a464176767f3a3a64f900d93
Author: Thomas Gleixner <tglx@linutronix.de>
AuthorDate: Wed, 11 Sep 2024 15:17:45 +02:00
Committer: Thomas Gleixner <tglx@linutronix.de>
CommitterDate: Wed, 02 Oct 2024 16:53:39 +02:00
ntp: Move tick_stat* into ntp_data
Continue the conversion from static variables to struct based data.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20240911-devel-anna-maria-b4-timers-ptp-ntp-v1-9-2d52f4e13476@linutronix.de
---
kernel/time/ntp.c | 175 +++++++++++++++++++++------------------------
1 file changed, 85 insertions(+), 90 deletions(-)
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
index 2430e69..42c039a 100644
--- a/kernel/time/ntp.c
+++ b/kernel/time/ntp.c
@@ -27,6 +27,8 @@
* @tick_usec: USER_HZ period in microseconds
* @tick_length: Adjusted tick length
* @tick_length_base: Base value for @tick_length
+ * @time_state: State of the clock synchronization
+ * @time_status: Clock status bits
*
* Protected by the timekeeping locks.
*/
@@ -34,10 +36,14 @@ struct ntp_data {
unsigned long tick_usec;
u64 tick_length;
u64 tick_length_base;
+ int time_state;
+ int time_status;
};
static struct ntp_data tk_ntp_data = {
.tick_usec = USER_TICK_USEC,
+ .time_state = TIME_OK,
+ .time_status = STA_UNSYNC,
};
#define SECS_PER_DAY 86400
@@ -53,16 +59,6 @@ static struct ntp_data tk_ntp_data = {
* estimated error = NTP dispersion.
*/
-/*
- * clock synchronization status
- *
- * (TIME_ERROR prevents overwriting the CMOS clock)
- */
-static int time_state = TIME_OK;
-
-/* clock status bits: */
-static int time_status = STA_UNSYNC;
-
/* time adjustment (nsecs): */
static s64 time_offset;
@@ -127,9 +123,9 @@ static long pps_errcnt; /* calibration errors */
* PPS kernel consumer compensates the whole phase error immediately.
* Otherwise, reduce the offset by a fixed factor times the time constant.
*/
-static inline s64 ntp_offset_chunk(s64 offset)
+static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
{
- if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
+ if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL)
return offset;
else
return shift_right(offset, SHIFT_PLL + time_constant);
@@ -159,13 +155,13 @@ static inline void pps_clear(void)
* Decrease pps_valid to indicate that another second has passed since the
* last PPS signal. When it reaches 0, indicate that PPS signal is missing.
*/
-static inline void pps_dec_valid(void)
+static inline void pps_dec_valid(struct ntp_data *ntpdata)
{
if (pps_valid > 0)
pps_valid--;
else {
- time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
- STA_PPSWANDER | STA_PPSERROR);
+ ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
+ STA_PPSWANDER | STA_PPSERROR);
pps_clear();
}
}
@@ -198,12 +194,12 @@ static inline bool is_error_status(int status)
&& (status & (STA_PPSWANDER|STA_PPSERROR)));
}
-static inline void pps_fill_timex(struct __kernel_timex *txc)
+static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
{
txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
PPM_SCALE_INV, NTP_SCALE_SHIFT);
txc->jitter = pps_jitter;
- if (!(time_status & STA_NANO))
+ if (!(ntpdata->time_status & STA_NANO))
txc->jitter = pps_jitter / NSEC_PER_USEC;
txc->shift = pps_shift;
txc->stabil = pps_stabil;
@@ -215,14 +211,14 @@ static inline void pps_fill_timex(struct __kernel_timex *txc)
#else /* !CONFIG_NTP_PPS */
-static inline s64 ntp_offset_chunk(s64 offset)
+static inline s64 ntp_offset_chunk(struct ntp_data *ntp, s64 offset)
{
return shift_right(offset, SHIFT_PLL + time_constant);
}
static inline void pps_reset_freq_interval(void) {}
static inline void pps_clear(void) {}
-static inline void pps_dec_valid(void) {}
+static inline void pps_dec_valid(struct ntp_data *ntpdata) {}
static inline void pps_set_freq(s64 freq) {}
static inline bool is_error_status(int status)
@@ -230,7 +226,7 @@ static inline bool is_error_status(int status)
return status & (STA_UNSYNC|STA_CLOCKERR);
}
-static inline void pps_fill_timex(struct __kernel_timex *txc)
+static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
{
/* PPS is not implemented, so these are zero */
txc->ppsfreq = 0;
@@ -268,30 +264,30 @@ static void ntp_update_frequency(struct ntp_data *ntpdata)
ntpdata->tick_length_base = new_base;
}
-static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
+static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs)
{
- time_status &= ~STA_MODE;
+ ntpdata->time_status &= ~STA_MODE;
if (secs < MINSEC)
return 0;
- if (!(time_status & STA_FLL) && (secs <= MAXSEC))
+ if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC))
return 0;
- time_status |= STA_MODE;
+ ntpdata->time_status |= STA_MODE;
return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
}
-static void ntp_update_offset(long offset)
+static void ntp_update_offset(struct ntp_data *ntpdata, long offset)
{
s64 freq_adj, offset64;
long secs, real_secs;
- if (!(time_status & STA_PLL))
+ if (!(ntpdata->time_status & STA_PLL))
return;
- if (!(time_status & STA_NANO)) {
+ if (!(ntpdata->time_status & STA_NANO)) {
/* Make sure the multiplication below won't overflow */
offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
offset *= NSEC_PER_USEC;
@@ -306,13 +302,13 @@ static void ntp_update_offset(long offset)
*/
real_secs = __ktime_get_real_seconds();
secs = (long)(real_secs - time_reftime);
- if (unlikely(time_status & STA_FREQHOLD))
+ if (unlikely(ntpdata->time_status & STA_FREQHOLD))
secs = 0;
time_reftime = real_secs;
offset64 = offset;
- freq_adj = ntp_update_offset_fll(offset64, secs);
+ freq_adj = ntp_update_offset_fll(ntpdata, offset64, secs);
/*
* Clamp update interval to reduce PLL gain with low
@@ -335,10 +331,10 @@ static void ntp_update_offset(long offset)
static void __ntp_clear(struct ntp_data *ntpdata)
{
/* Stop active adjtime() */
- time_adjust = 0;
- time_status |= STA_UNSYNC;
- time_maxerror = NTP_PHASE_LIMIT;
- time_esterror = NTP_PHASE_LIMIT;
+ time_adjust = 0;
+ ntpdata->time_status |= STA_UNSYNC;
+ time_maxerror = NTP_PHASE_LIMIT;
+ time_esterror = NTP_PHASE_LIMIT;
ntp_update_frequency(ntpdata);
@@ -372,9 +368,10 @@ u64 ntp_tick_length(void)
*/
ktime_t ntp_get_next_leap(void)
{
+ struct ntp_data *ntpdata = &tk_ntp_data;
ktime_t ret;
- if ((time_state == TIME_INS) && (time_status & STA_INS))
+ if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
return ktime_set(ntp_next_leap_sec, 0);
ret = KTIME_MAX;
return ret;
@@ -402,46 +399,46 @@ int second_overflow(time64_t secs)
* day, the system clock is set back one second; if in leap-delete
* state, the system clock is set ahead one second.
*/
- switch (time_state) {
+ switch (ntpdata->time_state) {
case TIME_OK:
- if (time_status & STA_INS) {
- time_state = TIME_INS;
+ if (ntpdata->time_status & STA_INS) {
+ ntpdata->time_state = TIME_INS;
div_s64_rem(secs, SECS_PER_DAY, &rem);
ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
- } else if (time_status & STA_DEL) {
- time_state = TIME_DEL;
+ } else if (ntpdata->time_status & STA_DEL) {
+ ntpdata->time_state = TIME_DEL;
div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
}
break;
case TIME_INS:
- if (!(time_status & STA_INS)) {
+ if (!(ntpdata->time_status & STA_INS)) {
ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_OK;
+ ntpdata->time_state = TIME_OK;
} else if (secs == ntp_next_leap_sec) {
leap = -1;
- time_state = TIME_OOP;
+ ntpdata->time_state = TIME_OOP;
pr_notice("Clock: inserting leap second 23:59:60 UTC\n");
}
break;
case TIME_DEL:
- if (!(time_status & STA_DEL)) {
+ if (!(ntpdata->time_status & STA_DEL)) {
ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_OK;
+ ntpdata->time_state = TIME_OK;
} else if (secs == ntp_next_leap_sec) {
leap = 1;
ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_WAIT;
+ ntpdata->time_state = TIME_WAIT;
pr_notice("Clock: deleting leap second 23:59:59 UTC\n");
}
break;
case TIME_OOP:
ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_WAIT;
+ ntpdata->time_state = TIME_WAIT;
break;
case TIME_WAIT:
- if (!(time_status & (STA_INS | STA_DEL)))
- time_state = TIME_OK;
+ if (!(ntpdata->time_status & (STA_INS | STA_DEL)))
+ ntpdata->time_state = TIME_OK;
break;
}
@@ -449,18 +446,18 @@ int second_overflow(time64_t secs)
time_maxerror += MAXFREQ / NSEC_PER_USEC;
if (time_maxerror > NTP_PHASE_LIMIT) {
time_maxerror = NTP_PHASE_LIMIT;
- time_status |= STA_UNSYNC;
+ ntpdata->time_status |= STA_UNSYNC;
}
/* Compute the phase adjustment for the next second */
ntpdata->tick_length = ntpdata->tick_length_base;
- delta = ntp_offset_chunk(time_offset);
+ delta = ntp_offset_chunk(ntpdata, time_offset);
time_offset -= delta;
ntpdata->tick_length += delta;
/* Check PPS signal */
- pps_dec_valid();
+ pps_dec_valid(ntpdata);
if (!time_adjust)
goto out;
@@ -608,7 +605,7 @@ static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_ns
*/
static inline bool ntp_synced(void)
{
- return !(time_status & STA_UNSYNC);
+ return !(tk_ntp_data.time_status & STA_UNSYNC);
}
/*
@@ -691,11 +688,11 @@ static inline void __init ntp_init_cmos_sync(void) { }
/*
* Propagate a new txc->status value into the NTP state:
*/
-static inline void process_adj_status(const struct __kernel_timex *txc)
+static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc)
{
- if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
- time_state = TIME_OK;
- time_status = STA_UNSYNC;
+ if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) {
+ ntpdata->time_state = TIME_OK;
+ ntpdata->time_status = STA_UNSYNC;
ntp_next_leap_sec = TIME64_MAX;
/* Restart PPS frequency calibration */
pps_reset_freq_interval();
@@ -705,26 +702,25 @@ static inline void process_adj_status(const struct __kernel_timex *txc)
* If we turn on PLL adjustments then reset the
* reference time to current time.
*/
- if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
+ if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL))
time_reftime = __ktime_get_real_seconds();
- /* Only set allowed bits */
- time_status &= STA_RONLY;
- time_status |= txc->status & ~STA_RONLY;
+ /* only set allowed bits */
+ ntpdata->time_status &= STA_RONLY;
+ ntpdata->time_status |= txc->status & ~STA_RONLY;
}
-
static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc,
s32 *time_tai)
{
if (txc->modes & ADJ_STATUS)
- process_adj_status(txc);
+ process_adj_status(ntpdata, txc);
if (txc->modes & ADJ_NANO)
- time_status |= STA_NANO;
+ ntpdata->time_status |= STA_NANO;
if (txc->modes & ADJ_MICRO)
- time_status &= ~STA_NANO;
+ ntpdata->time_status &= ~STA_NANO;
if (txc->modes & ADJ_FREQUENCY) {
time_freq = txc->freq * PPM_SCALE;
@@ -742,17 +738,16 @@ static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct
if (txc->modes & ADJ_TIMECONST) {
time_constant = clamp(txc->constant, 0, MAXTC);
- if (!(time_status & STA_NANO))
+ if (!(ntpdata->time_status & STA_NANO))
time_constant += 4;
time_constant = clamp(time_constant, 0, MAXTC);
}
- if (txc->modes & ADJ_TAI &&
- txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
+ if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
*time_tai = txc->constant;
if (txc->modes & ADJ_OFFSET)
- ntp_update_offset(txc->offset);
+ ntp_update_offset(ntpdata, txc->offset);
if (txc->modes & ADJ_TICK)
ntpdata->tick_usec = txc->tick;
@@ -788,7 +783,7 @@ int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
if (txc->modes) {
audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, time_offset);
audit_ntp_set_old(ad, AUDIT_NTP_FREQ, time_freq);
- audit_ntp_set_old(ad, AUDIT_NTP_STATUS, time_status);
+ audit_ntp_set_old(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
audit_ntp_set_old(ad, AUDIT_NTP_TAI, *time_tai);
audit_ntp_set_old(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
@@ -796,26 +791,26 @@ int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, time_offset);
audit_ntp_set_new(ad, AUDIT_NTP_FREQ, time_freq);
- audit_ntp_set_new(ad, AUDIT_NTP_STATUS, time_status);
+ audit_ntp_set_new(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
audit_ntp_set_new(ad, AUDIT_NTP_TAI, *time_tai);
audit_ntp_set_new(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
}
txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
NTP_SCALE_SHIFT);
- if (!(time_status & STA_NANO))
+ if (!(ntpdata->time_status & STA_NANO))
txc->offset = (u32)txc->offset / NSEC_PER_USEC;
}
- result = time_state;
- if (is_error_status(time_status))
+ result = ntpdata->time_state;
+ if (is_error_status(ntpdata->time_status))
result = TIME_ERROR;
txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
PPM_SCALE_INV, NTP_SCALE_SHIFT);
txc->maxerror = time_maxerror;
txc->esterror = time_esterror;
- txc->status = time_status;
+ txc->status = ntpdata->time_status;
txc->constant = time_constant;
txc->precision = 1;
txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
@@ -823,26 +818,26 @@ int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
txc->tai = *time_tai;
/* Fill PPS status fields */
- pps_fill_timex(txc);
+ pps_fill_timex(ntpdata, txc);
txc->time.tv_sec = ts->tv_sec;
txc->time.tv_usec = ts->tv_nsec;
- if (!(time_status & STA_NANO))
+ if (!(ntpdata->time_status & STA_NANO))
txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
/* Handle leapsec adjustments */
if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
- if ((time_state == TIME_INS) && (time_status & STA_INS)) {
+ if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) {
result = TIME_OOP;
txc->tai++;
txc->time.tv_sec--;
}
- if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
+ if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) {
result = TIME_WAIT;
txc->tai--;
txc->time.tv_sec++;
}
- if ((time_state == TIME_OOP) && (ts->tv_sec == ntp_next_leap_sec))
+ if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntp_next_leap_sec))
result = TIME_WAIT;
}
@@ -947,7 +942,7 @@ static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime fr
/* Check if the frequency interval was too long */
if (freq_norm.sec > (2 << pps_shift)) {
- time_status |= STA_PPSERROR;
+ ntpdata->time_status |= STA_PPSERROR;
pps_errcnt++;
pps_dec_freq_interval();
printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n",
@@ -966,7 +961,7 @@ static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime fr
pps_freq = ftemp;
if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta);
- time_status |= STA_PPSWANDER;
+ ntpdata->time_status |= STA_PPSWANDER;
pps_stbcnt++;
pps_dec_freq_interval();
} else {
@@ -985,7 +980,7 @@ static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime fr
NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
/* If enabled, the system clock frequency is updated */
- if ((time_status & STA_PPSFREQ) && !(time_status & STA_FREQHOLD)) {
+ if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) {
time_freq = pps_freq;
ntp_update_frequency(ntpdata);
}
@@ -994,7 +989,7 @@ static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime fr
}
/* Correct REALTIME clock phase error against PPS signal */
-static void hardpps_update_phase(long error)
+static void hardpps_update_phase(struct ntp_data *ntpdata, long error)
{
long correction = -error;
long jitter;
@@ -1011,9 +1006,9 @@ static void hardpps_update_phase(long error)
if (jitter > (pps_jitter << PPS_POPCORN)) {
printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
jitter, (pps_jitter << PPS_POPCORN));
- time_status |= STA_PPSJITTER;
+ ntpdata->time_status |= STA_PPSJITTER;
pps_jitcnt++;
- } else if (time_status & STA_PPSTIME) {
+ } else if (ntpdata->time_status & STA_PPSTIME) {
/* Correct the time using the phase offset */
time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
/* Cancel running adjtime() */
@@ -1043,10 +1038,10 @@ void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_t
pts_norm = pps_normalize_ts(*phase_ts);
/* Clear the error bits, they will be set again if needed */
- time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
+ ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
- /* Indicate signal presence */
- time_status |= STA_PPSSIGNAL;
+ /* indicate signal presence */
+ ntpdata->time_status |= STA_PPSSIGNAL;
pps_valid = PPS_VALID;
/*
@@ -1067,7 +1062,7 @@ void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_t
*/
if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
- time_status |= STA_PPSJITTER;
+ ntpdata->time_status |= STA_PPSJITTER;
/* Restart the frequency calibration interval */
pps_fbase = *raw_ts;
printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
@@ -1082,7 +1077,7 @@ void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_t
hardpps_update_freq(ntpdata, freq_norm);
}
- hardpps_update_phase(pts_norm.nsec);
+ hardpps_update_phase(ntpdata, pts_norm.nsec);
}
#endif /* CONFIG_NTP_PPS */
© 2016 - 2024 Red Hat, Inc.