RE: [PATCH V4 00/13] x86/Hyper-V: Add Hyper-V Isolation VM support

Michael Kelley posted 13 patches 2 years, 7 months ago
Only 0 patches received!
There is a newer version of this series
RE: [PATCH V4 00/13] x86/Hyper-V: Add Hyper-V Isolation VM support
Posted by Michael Kelley 2 years, 7 months ago
From: Christoph Hellwig <hch@lst.de> Sent: Monday, August 30, 2021 5:01 AM
> 
> Sorry for the delayed answer, but I look at the vmap_pfn usage in the
> previous version and tried to come up with a better version.  This
> mostly untested branch:
> 
> http://git.infradead.org/users/hch/misc.git/shortlog/refs/heads/hyperv-vmap
> 
> get us there for swiotlb and the channel infrastructure  I've started
> looking at the network driver and didn't get anywhere due to other work.
> 
> As far as I can tell the network driver does gigantic multi-megabyte
> vmalloc allocation for the send and receive buffers, which are then
> passed to the hardware, but always copied to/from when interacting
> with the networking stack.  Did I see that right?  Are these big
> buffers actually required unlike the normal buffer management schemes
> in other Linux network drivers?
> 
> If so I suspect the best way to allocate them is by not using vmalloc
> but just discontiguous pages, and then use kmap_local_pfn where the
> PFN includes the share_gpa offset when actually copying from/to the
> skbs.

As a quick overview, I think there are four places where the
shared_gpa_boundary must be applied to adjust the guest physical
address that is used.  Each requires mapping a corresponding
virtual address range.  Here are the four places:

1)  The so-called "monitor pages" that are a core communication
mechanism between the guest and Hyper-V.  These are two single
pages, and the mapping is handled by calling memremap() for
each of the two pages.  See Patch 7 of Tianyu's series.

2)  The VMbus channel ring buffers.  You have proposed using
your new  vmap_phys_range() helper, but I don't think that works
here.  More details below.

3)  The network driver send and receive buffers.  vmap_phys_range()
should work here.

4) The swiotlb memory used for bounce buffers.  vmap_phys_range()
should work here as well.

Case #2 above does unusual mapping.  The ring buffer consists of a ring
buffer header page, followed by one or more pages that are the actual
ring buffer.  The pages making up the actual ring buffer are mapped
twice in succession.  For example, if the ring buffer has 4 pages
(one header page and three ring buffer pages), the contiguous
virtual mapping must cover these seven pages:  0, 1, 2, 3, 1, 2, 3.
The duplicate contiguous mapping allows the code that is reading
or writing the actual ring buffer to not be concerned about wrap-around
because writing off the end of the ring buffer is automatically
wrapped-around by the mapping.  The amount of data read or
written in one batch never exceeds the size of the ring buffer, and
after a batch is read or written, the read or write indices are adjusted
to put them back into the range of the first mapping of the actual
ring buffer pages.  So there's method to the madness, and the
technique works pretty well.  But this kind of mapping is not
amenable to using vmap_phys_range().

Michael



Re: [PATCH V4 00/13] x86/Hyper-V: Add Hyper-V Isolation VM support
Posted by Christoph Hellwig 2 years, 7 months ago
On Tue, Aug 31, 2021 at 05:16:19PM +0000, Michael Kelley wrote:
> As a quick overview, I think there are four places where the
> shared_gpa_boundary must be applied to adjust the guest physical
> address that is used.  Each requires mapping a corresponding
> virtual address range.  Here are the four places:
> 
> 1)  The so-called "monitor pages" that are a core communication
> mechanism between the guest and Hyper-V.  These are two single
> pages, and the mapping is handled by calling memremap() for
> each of the two pages.  See Patch 7 of Tianyu's series.

Ah, interesting.

> 3)  The network driver send and receive buffers.  vmap_phys_range()
> should work here.

Actually it won't.  The problem with these buffers is that they are
physically non-contiguous allocations.  We really have two sensible
options:

 1) use vmap_pfn as in the current series.  But in that case I think
    we should get rid of the other mapping created by vmalloc.  I
    though a bit about finding a way to apply the offset in vmalloc
    itself, but I think it would be too invasive to the normal fast
    path.  So the other sub-option would be to allocate the pages
    manually (maybe even using high order allocations to reduce TLB
    pressure) and then remap them
 2) do away with the contiguous kernel mapping entirely.  This means
    the simple memcpy calls become loops over kmap_local_pfn.  As
    I just found out for the send side that would be pretty easy,
    but the receive side would be more work.  We'd also need to check
    the performance implications.

> 4) The swiotlb memory used for bounce buffers.  vmap_phys_range()
> should work here as well.

Or memremap if it works for 1.

> Case #2 above does unusual mapping.  The ring buffer consists of a ring
> buffer header page, followed by one or more pages that are the actual
> ring buffer.  The pages making up the actual ring buffer are mapped
> twice in succession.  For example, if the ring buffer has 4 pages
> (one header page and three ring buffer pages), the contiguous
> virtual mapping must cover these seven pages:  0, 1, 2, 3, 1, 2, 3.
> The duplicate contiguous mapping allows the code that is reading
> or writing the actual ring buffer to not be concerned about wrap-around
> because writing off the end of the ring buffer is automatically
> wrapped-around by the mapping.  The amount of data read or
> written in one batch never exceeds the size of the ring buffer, and
> after a batch is read or written, the read or write indices are adjusted
> to put them back into the range of the first mapping of the actual
> ring buffer pages.  So there's method to the madness, and the
> technique works pretty well.  But this kind of mapping is not
> amenable to using vmap_phys_range().

Hmm.  Can you point me to where this is mapped?  Especially for the
classic non-isolated case where no vmap/vmalloc mapping is involved
at all?

Re: [PATCH V4 00/13] x86/Hyper-V: Add Hyper-V Isolation VM support
Posted by Tianyu Lan 2 years, 7 months ago

On 9/2/2021 3:59 PM, Christoph Hellwig wrote:
> On Tue, Aug 31, 2021 at 05:16:19PM +0000, Michael Kelley wrote:
>> As a quick overview, I think there are four places where the
>> shared_gpa_boundary must be applied to adjust the guest physical
>> address that is used.  Each requires mapping a corresponding
>> virtual address range.  Here are the four places:
>>
>> 1)  The so-called "monitor pages" that are a core communication
>> mechanism between the guest and Hyper-V.  These are two single
>> pages, and the mapping is handled by calling memremap() for
>> each of the two pages.  See Patch 7 of Tianyu's series.
> 
> Ah, interesting.
> 
>> 3)  The network driver send and receive buffers.  vmap_phys_range()
>> should work here.
> 
> Actually it won't.  The problem with these buffers is that they are
> physically non-contiguous allocations.  We really have two sensible
> options:
> 
>   1) use vmap_pfn as in the current series.  But in that case I think
>      we should get rid of the other mapping created by vmalloc.  I
>      though a bit about finding a way to apply the offset in vmalloc
>      itself, but I think it would be too invasive to the normal fast
>      path.  So the other sub-option would be to allocate the pages
>      manually (maybe even using high order allocations to reduce TLB
>      pressure) and then remap them

Agree. In such case, the map for memory below shared_gpa_boundary is not 
necessary. allocate_pages() is limited by MAX_ORDER and needs to be 
called repeatedly to get enough memory.

>   2) do away with the contiguous kernel mapping entirely.  This means
>      the simple memcpy calls become loops over kmap_local_pfn.  As
>      I just found out for the send side that would be pretty easy,
>      but the receive side would be more work.  We'd also need to check
>      the performance implications.

kmap_local_pfn() requires pfn with backing struct page and this doesn't 
work pfn above shared_gpa_boundary.
> 
>> 4) The swiotlb memory used for bounce buffers.  vmap_phys_range()
>> should work here as well.
> 
> Or memremap if it works for 1.

Now use vmap_pfn() and the hv map function is reused in the netvsc driver.

> 
>> Case #2 above does unusual mapping.  The ring buffer consists of a ring
>> buffer header page, followed by one or more pages that are the actual
>> ring buffer.  The pages making up the actual ring buffer are mapped
>> twice in succession.  For example, if the ring buffer has 4 pages
>> (one header page and three ring buffer pages), the contiguous
>> virtual mapping must cover these seven pages:  0, 1, 2, 3, 1, 2, 3.
>> The duplicate contiguous mapping allows the code that is reading
>> or writing the actual ring buffer to not be concerned about wrap-around
>> because writing off the end of the ring buffer is automatically
>> wrapped-around by the mapping.  The amount of data read or
>> written in one batch never exceeds the size of the ring buffer, and
>> after a batch is read or written, the read or write indices are adjusted
>> to put them back into the range of the first mapping of the actual
>> ring buffer pages.  So there's method to the madness, and the
>> technique works pretty well.  But this kind of mapping is not
>> amenable to using vmap_phys_range().
> 
> Hmm.  Can you point me to where this is mapped?  Especially for the
> classic non-isolated case where no vmap/vmalloc mapping is involved
> at all?
> 

This is done via vmap() in the hv_ringbuffer_init()

182/* Initialize the ring buffer. */
183int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
184                       struct page *pages, u32 page_cnt, u32 
max_pkt_size)
185{
186        int i;
187        struct page **pages_wraparound;
188
189        BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
190
191        /*
192         * First page holds struct hv_ring_buffer, do wraparound 
mapping for
193         * the rest.
194         */
195        pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct 
page *),
196                                   GFP_KERNEL);
197        if (!pages_wraparound)
198                return -ENOMEM;
199
/* prepare to wrap page array */
200        pages_wraparound[0] = pages;
201        for (i = 0; i < 2 * (page_cnt - 1); i++)
202                pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
203
/* map */
204        ring_info->ring_buffer = (struct hv_ring_buffer *)
205                vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, 
PAGE_KERNEL);
206
207        kfree(pages_wraparound);
208
209
210        if (!ring_info->ring_buffer)
211                return -ENOMEM;
212
213        ring_info->ring_buffer->read_index =
214                ring_info->ring_buffer->write_index = 0;



RE: [PATCH V4 00/13] x86/Hyper-V: Add Hyper-V Isolation VM support
Posted by Michael Kelley 2 years, 7 months ago
From: Christoph Hellwig <hch@lst.de> Sent: Thursday, September 2, 2021 1:00 AM
> 
> On Tue, Aug 31, 2021 at 05:16:19PM +0000, Michael Kelley wrote:
> > As a quick overview, I think there are four places where the
> > shared_gpa_boundary must be applied to adjust the guest physical
> > address that is used.  Each requires mapping a corresponding
> > virtual address range.  Here are the four places:
> >
> > 1)  The so-called "monitor pages" that are a core communication
> > mechanism between the guest and Hyper-V.  These are two single
> > pages, and the mapping is handled by calling memremap() for
> > each of the two pages.  See Patch 7 of Tianyu's series.
> 
> Ah, interesting.
> 
> > 3)  The network driver send and receive buffers.  vmap_phys_range()
> > should work here.
> 
> Actually it won't.  The problem with these buffers is that they are
> physically non-contiguous allocations.  

Indeed you are right.  These buffers are allocated with vzalloc().

> We really have two sensible options:
> 
>  1) use vmap_pfn as in the current series.  But in that case I think
>     we should get rid of the other mapping created by vmalloc.  I
>     though a bit about finding a way to apply the offset in vmalloc
>     itself, but I think it would be too invasive to the normal fast
>     path.  So the other sub-option would be to allocate the pages
>     manually (maybe even using high order allocations to reduce TLB
>     pressure) and then remap them

What's the benefit of getting rid of the other mapping created by
vmalloc if it isn't referenced?  Just page table space?  The default sizes
are a 16 Meg receive buffer and a 1 Meg send buffer for each VMbus
channel used by netvsc, and usually the max number of channels
is 8.  So there's 128 Meg of virtual space to be saved on the receive
buffers,  which could be worth it.

Allocating the pages manually is also an option, but we have to
be careful about high order allocations.  While typically these buffers
are allocated during system boot, these synthetic NICs can be hot
added and removed while the VM is running.   The channel count
can also be changed while the VM is running.  So multiple 16 Meg
receive buffer allocations may need to be done after the system has
been running a long time.

>  2) do away with the contiguous kernel mapping entirely.  This means
>     the simple memcpy calls become loops over kmap_local_pfn.  As
>     I just found out for the send side that would be pretty easy,
>     but the receive side would be more work.  We'd also need to check
>     the performance implications.

Doing away with the contiguous kernel mapping entirely seems like
it would result in fairly messy code to access the buffer.  What's the
benefit of doing away with the mapping?  I'm not an expert on the
netvsc driver, but decoding the incoming packets is already fraught
with complexities because of the nature of the protocol with Hyper-V.
The contiguous kernel mapping at least keeps the basics sane.

> 
> > 4) The swiotlb memory used for bounce buffers.  vmap_phys_range()
> > should work here as well.
> 
> Or memremap if it works for 1.
> 
> > Case #2 above does unusual mapping.  The ring buffer consists of a ring
> > buffer header page, followed by one or more pages that are the actual
> > ring buffer.  The pages making up the actual ring buffer are mapped
> > twice in succession.  For example, if the ring buffer has 4 pages
> > (one header page and three ring buffer pages), the contiguous
> > virtual mapping must cover these seven pages:  0, 1, 2, 3, 1, 2, 3.
> > The duplicate contiguous mapping allows the code that is reading
> > or writing the actual ring buffer to not be concerned about wrap-around
> > because writing off the end of the ring buffer is automatically
> > wrapped-around by the mapping.  The amount of data read or
> > written in one batch never exceeds the size of the ring buffer, and
> > after a batch is read or written, the read or write indices are adjusted
> > to put them back into the range of the first mapping of the actual
> > ring buffer pages.  So there's method to the madness, and the
> > technique works pretty well.  But this kind of mapping is not
> > amenable to using vmap_phys_range().
> 
> Hmm.  Can you point me to where this is mapped?  Especially for the
> classic non-isolated case where no vmap/vmalloc mapping is involved
> at all?

The existing code is in hv_ringbuffer_init() in drivers/hv/ring_buffer.c.
The code hasn't changed in a while, so any recent upstream code tree
is valid to look at.  The memory pages are typically allocated
in vmbus_alloc_ring() in drivers/hv/channel.c.

Michael

Re: [PATCH V4 00/13] x86/Hyper-V: Add Hyper-V Isolation VM support
Posted by Tianyu Lan 2 years, 7 months ago
Hi Michael and Christoph:
       I just sent out V5 patchset. I use alloc_pages() to allocate rx/tx
ring buffer in Isolation VM and use vmap() to map rx/tx buffer first
because the vmbus_establish_gpadl() still needs to va of low end memory
to initialize gpadl buffer. After calling vmbus_establish_gpadl(), the
va returned by vmap will be unmapped to release virtual address space 
which will not be used in the following code and then map these pages in 
the extra address space above shared_gpa_boundary via vmap_pfn(). Please
have a look.

https://lkml.org/lkml/2021/9/14/672

Thanks.

On 9/2/2021 11:57 PM, Michael Kelley wrote:
> From: Christoph Hellwig <hch@lst.de> Sent: Thursday, September 2, 2021 1:00 AM
>>
>> On Tue, Aug 31, 2021 at 05:16:19PM +0000, Michael Kelley wrote:
>>> As a quick overview, I think there are four places where the
>>> shared_gpa_boundary must be applied to adjust the guest physical
>>> address that is used.  Each requires mapping a corresponding
>>> virtual address range.  Here are the four places:
>>>
>>> 1)  The so-called "monitor pages" that are a core communication
>>> mechanism between the guest and Hyper-V.  These are two single
>>> pages, and the mapping is handled by calling memremap() for
>>> each of the two pages.  See Patch 7 of Tianyu's series.
>>
>> Ah, interesting.
>>
>>> 3)  The network driver send and receive buffers.  vmap_phys_range()
>>> should work here.
>>
>> Actually it won't.  The problem with these buffers is that they are
>> physically non-contiguous allocations.
> 
> Indeed you are right.  These buffers are allocated with vzalloc().
> 
>> We really have two sensible options:
>>
>>   1) use vmap_pfn as in the current series.  But in that case I think
>>      we should get rid of the other mapping created by vmalloc.  I
>>      though a bit about finding a way to apply the offset in vmalloc
>>      itself, but I think it would be too invasive to the normal fast
>>      path.  So the other sub-option would be to allocate the pages
>>      manually (maybe even using high order allocations to reduce TLB
>>      pressure) and then remap them
> 
> What's the benefit of getting rid of the other mapping created by
> vmalloc if it isn't referenced?  Just page table space?  The default sizes
> are a 16 Meg receive buffer and a 1 Meg send buffer for each VMbus
> channel used by netvsc, and usually the max number of channels
> is 8.  So there's 128 Meg of virtual space to be saved on the receive
> buffers,  which could be worth it.
> 
> Allocating the pages manually is also an option, but we have to
> be careful about high order allocations.  While typically these buffers
> are allocated during system boot, these synthetic NICs can be hot
> added and removed while the VM is running.   The channel count
> can also be changed while the VM is running.  So multiple 16 Meg
> receive buffer allocations may need to be done after the system has
> been running a long time.
> 
>>   2) do away with the contiguous kernel mapping entirely.  This means
>>      the simple memcpy calls become loops over kmap_local_pfn.  As
>>      I just found out for the send side that would be pretty easy,
>>      but the receive side would be more work.  We'd also need to check
>>      the performance implications.
> 
> Doing away with the contiguous kernel mapping entirely seems like
> it would result in fairly messy code to access the buffer.  What's the
> benefit of doing away with the mapping?  I'm not an expert on the
> netvsc driver, but decoding the incoming packets is already fraught
> with complexities because of the nature of the protocol with Hyper-V.
> The contiguous kernel mapping at least keeps the basics sane.
> 
>>
>>> 4) The swiotlb memory used for bounce buffers.  vmap_phys_range()
>>> should work here as well.
>>
>> Or memremap if it works for 1.
>>
>>> Case #2 above does unusual mapping.  The ring buffer consists of a ring
>>> buffer header page, followed by one or more pages that are the actual
>>> ring buffer.  The pages making up the actual ring buffer are mapped
>>> twice in succession.  For example, if the ring buffer has 4 pages
>>> (one header page and three ring buffer pages), the contiguous
>>> virtual mapping must cover these seven pages:  0, 1, 2, 3, 1, 2, 3.
>>> The duplicate contiguous mapping allows the code that is reading
>>> or writing the actual ring buffer to not be concerned about wrap-around
>>> because writing off the end of the ring buffer is automatically
>>> wrapped-around by the mapping.  The amount of data read or
>>> written in one batch never exceeds the size of the ring buffer, and
>>> after a batch is read or written, the read or write indices are adjusted
>>> to put them back into the range of the first mapping of the actual
>>> ring buffer pages.  So there's method to the madness, and the
>>> technique works pretty well.  But this kind of mapping is not
>>> amenable to using vmap_phys_range().
>>
>> Hmm.  Can you point me to where this is mapped?  Especially for the
>> classic non-isolated case where no vmap/vmalloc mapping is involved
>> at all?
> 
> The existing code is in hv_ringbuffer_init() in drivers/hv/ring_buffer.c.
> The code hasn't changed in a while, so any recent upstream code tree
> is valid to look at.  The memory pages are typically allocated
> in vmbus_alloc_ring() in drivers/hv/channel.c.
> 
> Michael
>