Implement the FPCR.EBF=1 semantics for bfdotadd() operations:
* is_ebf() sets up fpst and fpst_odd
* bfdotadd_ebf() implements the fused paired-multiply-and-add
operation that we need
The paired-multiply-and-add is similar to f16_dotadd() and
we use the same trick here as in that function, but the inputs
here are bfloat16 rather than float16.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
---
target/arm/tcg/vec_helper.c | 57 +++++++++++++++++++++++++++++++++++--
1 file changed, 54 insertions(+), 3 deletions(-)
diff --git a/target/arm/tcg/vec_helper.c b/target/arm/tcg/vec_helper.c
index b0de74b55f1..22ddb968817 100644
--- a/target/arm/tcg/vec_helper.c
+++ b/target/arm/tcg/vec_helper.c
@@ -2792,7 +2792,20 @@ DO_MMLA_B(gvec_usmmla_b, do_usmmla_b)
bool is_ebf(CPUARMState *env, float_status *statusp, float_status *oddstatusp)
{
- /* FPCR is ignored for BFDOT and BFMMLA. */
+ /*
+ * For BFDOT, BFMMLA, etc, the behaviour depends on FPCR.EBF.
+ * For EBF = 0, we ignore the FPCR bits which determine rounding
+ * mode and denormal-flushing, and we do unfused multiplies and
+ * additions with intermediate rounding of all products and sums.
+ * For EBF = 1, we honour FPCR rounding mode and denormal-flushing bits,
+ * and we perform a fused two-way sum-of-products without intermediate
+ * rounding of the products.
+ * In either case, we don't set fp exception flags.
+ *
+ * EBF is AArch64 only, so even if it's set in the FPCR it has
+ * no effect on AArch32 instructions.
+ */
+ bool ebf = is_a64(env) && env->vfp.fpcr & FPCR_EBF;
*statusp = (float_status){
.tininess_before_rounding = float_tininess_before_rounding,
.float_rounding_mode = float_round_to_odd_inf,
@@ -2801,7 +2814,18 @@ bool is_ebf(CPUARMState *env, float_status *statusp, float_status *oddstatusp)
.default_nan_mode = true,
};
- return false;
+ if (ebf) {
+ float_status *fpst = &env->vfp.fp_status;
+ set_flush_to_zero(get_flush_to_zero(fpst), statusp);
+ set_flush_inputs_to_zero(get_flush_inputs_to_zero(fpst), statusp);
+ set_float_rounding_mode(get_float_rounding_mode(fpst), statusp);
+
+ /* EBF=1 needs to do a step with round-to-odd semantics */
+ *oddstatusp = *statusp;
+ set_float_rounding_mode(float_round_to_odd, oddstatusp);
+ }
+
+ return ebf;
}
float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst)
@@ -2823,7 +2847,34 @@ float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst)
float32 bfdotadd_ebf(float32 sum, uint32_t e1, uint32_t e2,
float_status *fpst, float_status *fpst_odd)
{
- g_assert_not_reached();
+ /*
+ * Compare f16_dotadd() in sme_helper.c, but here we have
+ * bfloat16 inputs. In particular that means that we do not
+ * want the FPCR.FZ16 flush semantics, so we use the normal
+ * float_status for the input handling here.
+ */
+ float64 e1r = float32_to_float64(e1 << 16, fpst);
+ float64 e1c = float32_to_float64(e1 & 0xffff0000u, fpst);
+ float64 e2r = float32_to_float64(e2 << 16, fpst);
+ float64 e2c = float32_to_float64(e2 & 0xffff0000u, fpst);
+ float64 t64;
+ float32 t32;
+
+ /*
+ * The ARM pseudocode function FPDot performs both multiplies
+ * and the add with a single rounding operation. Emulate this
+ * by performing the first multiply in round-to-odd, then doing
+ * the second multiply as fused multiply-add, and rounding to
+ * float32 all in one step.
+ */
+ t64 = float64_mul(e1r, e2r, fpst_odd);
+ t64 = float64r32_muladd(e1c, e2c, t64, 0, fpst);
+
+ /* This conversion is exact, because we've already rounded. */
+ t32 = float64_to_float32(t64, fpst);
+
+ /* The final accumulation step is not fused. */
+ return float32_add(sum, t32, fpst);
}
void HELPER(gvec_bfdot)(void *vd, void *vn, void *vm, void *va,
--
2.34.1