Split less-than and greater-than 256 cases.
Use unaligned accesses for head and tail.
Avoid using out-of-bounds pointers in loop boundary conditions.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
---
util/bufferiszero.c | 86 +++++++++++++++++++++++++++------------------
1 file changed, 52 insertions(+), 34 deletions(-)
diff --git a/util/bufferiszero.c b/util/bufferiszero.c
index 2822155c27..ce04642c67 100644
--- a/util/bufferiszero.c
+++ b/util/bufferiszero.c
@@ -28,40 +28,58 @@
static bool (*buffer_is_zero_accel)(const void *, size_t);
-static bool buffer_is_zero_integer(const void *buf, size_t len)
+static bool buffer_is_zero_int_lt256(const void *buf, size_t len)
{
- if (unlikely(len < 8)) {
- /* For a very small buffer, simply accumulate all the bytes. */
- const unsigned char *p = buf;
- const unsigned char *e = buf + len;
- unsigned char t = 0;
+ uint64_t t;
+ const uint64_t *p, *e;
- do {
- t |= *p++;
- } while (p < e);
-
- return t == 0;
- } else {
- /* Otherwise, use the unaligned memory access functions to
- handle the beginning and end of the buffer, with a couple
- of loops handling the middle aligned section. */
- uint64_t t = ldq_he_p(buf);
- const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8);
- const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8);
-
- for (; p + 8 <= e; p += 8) {
- if (t) {
- return false;
- }
- t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
- }
- while (p < e) {
- t |= *p++;
- }
- t |= ldq_he_p(buf + len - 8);
-
- return t == 0;
+ /*
+ * Use unaligned memory access functions to handle
+ * the beginning and end of the buffer, with a couple
+ * of loops handling the middle aligned section.
+ */
+ if (unlikely(len <= 8)) {
+ return (ldl_he_p(buf) | ldl_he_p(buf + len - 4)) == 0;
}
+
+ t = ldq_he_p(buf) | ldq_he_p(buf + len - 8);
+ p = QEMU_ALIGN_PTR_DOWN(buf + 8, 8);
+ e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 8);
+
+ while (p < e) {
+ t |= *p++;
+ }
+ return t == 0;
+}
+
+static bool buffer_is_zero_int_ge256(const void *buf, size_t len)
+{
+ /*
+ * Use unaligned memory access functions to handle
+ * the beginning and end of the buffer, with a couple
+ * of loops handling the middle aligned section.
+ */
+ uint64_t t = ldq_he_p(buf) | ldq_he_p(buf + len - 8);
+ const uint64_t *p = QEMU_ALIGN_PTR_DOWN(buf + 8, 8);
+ const uint64_t *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 8);
+
+ /* Collect a partial block at the tail end. */
+ t |= e[-7] | e[-6] | e[-5] | e[-4] | e[-3] | e[-2] | e[-1];
+
+ /*
+ * Loop over 64 byte blocks.
+ * With the head and tail removed, e - p >= 30,
+ * so the loop must iterate at least 3 times.
+ */
+ do {
+ if (t) {
+ return false;
+ }
+ t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
+ p += 8;
+ } while (p < e - 7);
+
+ return t == 0;
}
#if defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
@@ -173,7 +191,7 @@ select_accel_cpuinfo(unsigned info)
{ CPUINFO_AVX2, buffer_zero_avx2 },
#endif
{ CPUINFO_SSE2, buffer_zero_sse2 },
- { CPUINFO_ALWAYS, buffer_is_zero_integer },
+ { CPUINFO_ALWAYS, buffer_is_zero_int_ge256 },
};
for (unsigned i = 0; i < ARRAY_SIZE(all); ++i) {
@@ -211,7 +229,7 @@ bool test_buffer_is_zero_next_accel(void)
return false;
}
-#define INIT_ACCEL buffer_is_zero_integer
+#define INIT_ACCEL buffer_is_zero_int_ge256
#endif
static bool (*buffer_is_zero_accel)(const void *, size_t) = INIT_ACCEL;
@@ -237,7 +255,7 @@ bool buffer_is_zero_ool(const void *buf, size_t len)
if (likely(len >= 256)) {
return buffer_is_zero_accel(buf, len);
}
- return buffer_is_zero_integer(buf, len);
+ return buffer_is_zero_int_lt256(buf, len);
}
bool buffer_is_zero_ge256(const void *buf, size_t len)
--
2.34.1