* Use a safe thread queue for DSA task enqueue/dequeue.
* Implement DSA task submission.
* Implement DSA batch task submission.
Signed-off-by: Hao Xiang <hao.xiang@bytedance.com>
---
include/qemu/dsa.h | 35 ++++++++
util/dsa.c | 196 +++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 231 insertions(+)
diff --git a/include/qemu/dsa.h b/include/qemu/dsa.h
index 30246b507e..23f55185be 100644
--- a/include/qemu/dsa.h
+++ b/include/qemu/dsa.h
@@ -12,6 +12,41 @@
#include <linux/idxd.h>
#include "x86intrin.h"
+enum dsa_task_type {
+ DSA_TASK = 0,
+ DSA_BATCH_TASK
+};
+
+enum dsa_task_status {
+ DSA_TASK_READY = 0,
+ DSA_TASK_PROCESSING,
+ DSA_TASK_COMPLETION
+};
+
+typedef void (*buffer_zero_dsa_completion_fn)(void *);
+
+typedef struct buffer_zero_batch_task {
+ struct dsa_hw_desc batch_descriptor;
+ struct dsa_hw_desc *descriptors;
+ struct dsa_completion_record batch_completion __attribute__((aligned(32)));
+ struct dsa_completion_record *completions;
+ struct dsa_device_group *group;
+ struct dsa_device *device;
+ buffer_zero_dsa_completion_fn completion_callback;
+ QemuSemaphore sem_task_complete;
+ enum dsa_task_type task_type;
+ enum dsa_task_status status;
+ bool *results;
+ int batch_size;
+ QSIMPLEQ_ENTRY(buffer_zero_batch_task) entry;
+} buffer_zero_batch_task;
+
+#else
+
+struct buffer_zero_batch_task {
+ bool *results;
+};
+
#endif
/**
diff --git a/util/dsa.c b/util/dsa.c
index 8edaa892ec..f82282ce99 100644
--- a/util/dsa.c
+++ b/util/dsa.c
@@ -245,6 +245,200 @@ dsa_device_group_get_next_device(struct dsa_device_group *group)
return &group->dsa_devices[current];
}
+/**
+ * @brief Empties out the DSA task queue.
+ *
+ * @param group A pointer to the DSA device group.
+ */
+static void
+dsa_empty_task_queue(struct dsa_device_group *group)
+{
+ qemu_mutex_lock(&group->task_queue_lock);
+ dsa_task_queue *task_queue = &group->task_queue;
+ while (!QSIMPLEQ_EMPTY(task_queue)) {
+ QSIMPLEQ_REMOVE_HEAD(task_queue, entry);
+ }
+ qemu_mutex_unlock(&group->task_queue_lock);
+}
+
+/**
+ * @brief Adds a task to the DSA task queue.
+ *
+ * @param group A pointer to the DSA device group.
+ * @param context A pointer to the DSA task to enqueue.
+ *
+ * @return int Zero if successful, otherwise a proper error code.
+ */
+static int
+dsa_task_enqueue(struct dsa_device_group *group,
+ struct buffer_zero_batch_task *task)
+{
+ dsa_task_queue *task_queue = &group->task_queue;
+ QemuMutex *task_queue_lock = &group->task_queue_lock;
+ QemuCond *task_queue_cond = &group->task_queue_cond;
+
+ bool notify = false;
+
+ qemu_mutex_lock(task_queue_lock);
+
+ if (!group->running) {
+ fprintf(stderr, "DSA: Tried to queue task to stopped device queue\n");
+ qemu_mutex_unlock(task_queue_lock);
+ return -1;
+ }
+
+ // The queue is empty. This enqueue operation is a 0->1 transition.
+ if (QSIMPLEQ_EMPTY(task_queue))
+ notify = true;
+
+ QSIMPLEQ_INSERT_TAIL(task_queue, task, entry);
+
+ // We need to notify the waiter for 0->1 transitions.
+ if (notify)
+ qemu_cond_signal(task_queue_cond);
+
+ qemu_mutex_unlock(task_queue_lock);
+
+ return 0;
+}
+
+/**
+ * @brief Takes a DSA task out of the task queue.
+ *
+ * @param group A pointer to the DSA device group.
+ * @return buffer_zero_batch_task* The DSA task being dequeued.
+ */
+__attribute__((unused))
+static struct buffer_zero_batch_task *
+dsa_task_dequeue(struct dsa_device_group *group)
+{
+ struct buffer_zero_batch_task *task = NULL;
+ dsa_task_queue *task_queue = &group->task_queue;
+ QemuMutex *task_queue_lock = &group->task_queue_lock;
+ QemuCond *task_queue_cond = &group->task_queue_cond;
+
+ qemu_mutex_lock(task_queue_lock);
+
+ while (true) {
+ if (!group->running)
+ goto exit;
+ task = QSIMPLEQ_FIRST(task_queue);
+ if (task != NULL) {
+ break;
+ }
+ qemu_cond_wait(task_queue_cond, task_queue_lock);
+ }
+
+ QSIMPLEQ_REMOVE_HEAD(task_queue, entry);
+
+exit:
+ qemu_mutex_unlock(task_queue_lock);
+ return task;
+}
+
+/**
+ * @brief Submits a DSA work item to the device work queue.
+ *
+ * @param wq A pointer to the DSA work queue's device memory.
+ * @param descriptor A pointer to the DSA work item descriptor.
+ *
+ * @return Zero if successful, non-zero otherwise.
+ */
+static int
+submit_wi_int(void *wq, struct dsa_hw_desc *descriptor)
+{
+ uint64_t retry = 0;
+
+ _mm_sfence();
+
+ while (true) {
+ if (_enqcmd(wq, descriptor) == 0) {
+ break;
+ }
+ retry++;
+ if (retry > max_retry_count) {
+ fprintf(stderr, "Submit work retry %lu times.\n", retry);
+ exit(1);
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * @brief Synchronously submits a DSA work item to the
+ * device work queue.
+ *
+ * @param wq A pointer to the DSA worjk queue's device memory.
+ * @param descriptor A pointer to the DSA work item descriptor.
+ *
+ * @return int Zero if successful, non-zero otherwise.
+ */
+__attribute__((unused))
+static int
+submit_wi(void *wq, struct dsa_hw_desc *descriptor)
+{
+ return submit_wi_int(wq, descriptor);
+}
+
+/**
+ * @brief Asynchronously submits a DSA work item to the
+ * device work queue.
+ *
+ * @param task A pointer to the buffer zero task.
+ *
+ * @return int Zero if successful, non-zero otherwise.
+ */
+__attribute__((unused))
+static int
+submit_wi_async(struct buffer_zero_batch_task *task)
+{
+ struct dsa_device_group *device_group = task->group;
+ struct dsa_device *device_instance = task->device;
+ int ret;
+
+ assert(task->task_type == DSA_TASK);
+
+ task->status = DSA_TASK_PROCESSING;
+
+ ret = submit_wi_int(device_instance->work_queue,
+ &task->descriptors[0]);
+ if (ret != 0)
+ return ret;
+
+ return dsa_task_enqueue(device_group, task);
+}
+
+/**
+ * @brief Asynchronously submits a DSA batch work item to the
+ * device work queue.
+ *
+ * @param batch_task A pointer to the batch buffer zero task.
+ *
+ * @return int Zero if successful, non-zero otherwise.
+ */
+__attribute__((unused))
+static int
+submit_batch_wi_async(struct buffer_zero_batch_task *batch_task)
+{
+ struct dsa_device_group *device_group = batch_task->group;
+ struct dsa_device *device_instance = batch_task->device;
+ int ret;
+
+ assert(batch_task->task_type == DSA_BATCH_TASK);
+ assert(batch_task->batch_descriptor.desc_count <= batch_task->batch_size);
+ assert(batch_task->status == DSA_TASK_READY);
+
+ batch_task->status = DSA_TASK_PROCESSING;
+
+ ret = submit_wi_int(device_instance->work_queue,
+ &batch_task->batch_descriptor);
+ if (ret != 0)
+ return ret;
+
+ return dsa_task_enqueue(device_group, batch_task);
+}
+
/**
* @brief Check if DSA is running.
*
@@ -301,6 +495,8 @@ void dsa_stop(void)
if (!group->running) {
return;
}
+
+ dsa_empty_task_queue(group);
}
/**
--
2.30.2
Hao Xiang <hao.xiang@bytedance.com> writes: > * Use a safe thread queue for DSA task enqueue/dequeue. > * Implement DSA task submission. > * Implement DSA batch task submission. > > Signed-off-by: Hao Xiang <hao.xiang@bytedance.com> > --- > include/qemu/dsa.h | 35 ++++++++ > util/dsa.c | 196 +++++++++++++++++++++++++++++++++++++++++++++ > 2 files changed, 231 insertions(+) > > diff --git a/include/qemu/dsa.h b/include/qemu/dsa.h > index 30246b507e..23f55185be 100644 > --- a/include/qemu/dsa.h > +++ b/include/qemu/dsa.h > @@ -12,6 +12,41 @@ > #include <linux/idxd.h> > #include "x86intrin.h" > > +enum dsa_task_type { Our coding style requires CamelCase for enums and typedef'ed structures. > + DSA_TASK = 0, > + DSA_BATCH_TASK > +}; > + > +enum dsa_task_status { > + DSA_TASK_READY = 0, > + DSA_TASK_PROCESSING, > + DSA_TASK_COMPLETION > +}; > + > +typedef void (*buffer_zero_dsa_completion_fn)(void *); We don't really need the "buffer_zero" mention in any of this code. Simply dsa_batch_task or batch_task would suffice. > + > +typedef struct buffer_zero_batch_task { > + struct dsa_hw_desc batch_descriptor; > + struct dsa_hw_desc *descriptors; > + struct dsa_completion_record batch_completion __attribute__((aligned(32))); > + struct dsa_completion_record *completions; > + struct dsa_device_group *group; > + struct dsa_device *device; > + buffer_zero_dsa_completion_fn completion_callback; > + QemuSemaphore sem_task_complete; > + enum dsa_task_type task_type; > + enum dsa_task_status status; > + bool *results; > + int batch_size; > + QSIMPLEQ_ENTRY(buffer_zero_batch_task) entry; > +} buffer_zero_batch_task; I see data specific to this implementation and data coming from the library, maybe these would be better organized in two separate structures with the qemu-specific having a pointer to the generic one. Looking ahead in the series, there seems to be migration data coming into this as well. > + > +#else > + > +struct buffer_zero_batch_task { > + bool *results; > +}; > + > #endif > > /** > diff --git a/util/dsa.c b/util/dsa.c > index 8edaa892ec..f82282ce99 100644 > --- a/util/dsa.c > +++ b/util/dsa.c > @@ -245,6 +245,200 @@ dsa_device_group_get_next_device(struct dsa_device_group *group) > return &group->dsa_devices[current]; > } > > +/** > + * @brief Empties out the DSA task queue. > + * > + * @param group A pointer to the DSA device group. > + */ > +static void > +dsa_empty_task_queue(struct dsa_device_group *group) > +{ > + qemu_mutex_lock(&group->task_queue_lock); > + dsa_task_queue *task_queue = &group->task_queue; > + while (!QSIMPLEQ_EMPTY(task_queue)) { > + QSIMPLEQ_REMOVE_HEAD(task_queue, entry); > + } > + qemu_mutex_unlock(&group->task_queue_lock); > +} > + > +/** > + * @brief Adds a task to the DSA task queue. > + * > + * @param group A pointer to the DSA device group. > + * @param context A pointer to the DSA task to enqueue. > + * > + * @return int Zero if successful, otherwise a proper error code. > + */ > +static int > +dsa_task_enqueue(struct dsa_device_group *group, > + struct buffer_zero_batch_task *task) > +{ > + dsa_task_queue *task_queue = &group->task_queue; > + QemuMutex *task_queue_lock = &group->task_queue_lock; > + QemuCond *task_queue_cond = &group->task_queue_cond; > + > + bool notify = false; > + > + qemu_mutex_lock(task_queue_lock); > + > + if (!group->running) { > + fprintf(stderr, "DSA: Tried to queue task to stopped device queue\n"); > + qemu_mutex_unlock(task_queue_lock); > + return -1; > + } > + > + // The queue is empty. This enqueue operation is a 0->1 transition. > + if (QSIMPLEQ_EMPTY(task_queue)) > + notify = true; > + > + QSIMPLEQ_INSERT_TAIL(task_queue, task, entry); > + > + // We need to notify the waiter for 0->1 transitions. > + if (notify) > + qemu_cond_signal(task_queue_cond); > + > + qemu_mutex_unlock(task_queue_lock); > + > + return 0; > +} > + > +/** > + * @brief Takes a DSA task out of the task queue. > + * > + * @param group A pointer to the DSA device group. > + * @return buffer_zero_batch_task* The DSA task being dequeued. > + */ > +__attribute__((unused)) > +static struct buffer_zero_batch_task * > +dsa_task_dequeue(struct dsa_device_group *group) > +{ > + struct buffer_zero_batch_task *task = NULL; > + dsa_task_queue *task_queue = &group->task_queue; > + QemuMutex *task_queue_lock = &group->task_queue_lock; > + QemuCond *task_queue_cond = &group->task_queue_cond; > + > + qemu_mutex_lock(task_queue_lock); > + > + while (true) { > + if (!group->running) > + goto exit; > + task = QSIMPLEQ_FIRST(task_queue); > + if (task != NULL) { > + break; > + } > + qemu_cond_wait(task_queue_cond, task_queue_lock); > + } > + > + QSIMPLEQ_REMOVE_HEAD(task_queue, entry); > + > +exit: > + qemu_mutex_unlock(task_queue_lock); > + return task; > +} > + > +/** > + * @brief Submits a DSA work item to the device work queue. > + * > + * @param wq A pointer to the DSA work queue's device memory. > + * @param descriptor A pointer to the DSA work item descriptor. > + * > + * @return Zero if successful, non-zero otherwise. > + */ > +static int > +submit_wi_int(void *wq, struct dsa_hw_desc *descriptor) > +{ > + uint64_t retry = 0; > + > + _mm_sfence(); > + > + while (true) { > + if (_enqcmd(wq, descriptor) == 0) { > + break; > + } > + retry++; > + if (retry > max_retry_count) { 'max_retry_count' is UINT64_MAX so 'retry' will wrap around. > + fprintf(stderr, "Submit work retry %lu times.\n", retry); > + exit(1); Is this not the case where we'd fallback to the CPU? You should not exit() here, but return non-zero as the documentation mentions and the callers expect. > + } > + } > + > + return 0; > +} > + > +/** > + * @brief Synchronously submits a DSA work item to the > + * device work queue. > + * > + * @param wq A pointer to the DSA worjk queue's device memory. > + * @param descriptor A pointer to the DSA work item descriptor. > + * > + * @return int Zero if successful, non-zero otherwise. > + */ > +__attribute__((unused)) > +static int > +submit_wi(void *wq, struct dsa_hw_desc *descriptor) > +{ > + return submit_wi_int(wq, descriptor); > +} > + > +/** > + * @brief Asynchronously submits a DSA work item to the > + * device work queue. > + * > + * @param task A pointer to the buffer zero task. > + * > + * @return int Zero if successful, non-zero otherwise. > + */ > +__attribute__((unused)) > +static int > +submit_wi_async(struct buffer_zero_batch_task *task) > +{ > + struct dsa_device_group *device_group = task->group; > + struct dsa_device *device_instance = task->device; > + int ret; > + > + assert(task->task_type == DSA_TASK); > + > + task->status = DSA_TASK_PROCESSING; > + > + ret = submit_wi_int(device_instance->work_queue, > + &task->descriptors[0]); > + if (ret != 0) > + return ret; > + > + return dsa_task_enqueue(device_group, task); > +} > + > +/** > + * @brief Asynchronously submits a DSA batch work item to the > + * device work queue. > + * > + * @param batch_task A pointer to the batch buffer zero task. > + * > + * @return int Zero if successful, non-zero otherwise. > + */ > +__attribute__((unused)) > +static int > +submit_batch_wi_async(struct buffer_zero_batch_task *batch_task) > +{ > + struct dsa_device_group *device_group = batch_task->group; > + struct dsa_device *device_instance = batch_task->device; > + int ret; > + > + assert(batch_task->task_type == DSA_BATCH_TASK); > + assert(batch_task->batch_descriptor.desc_count <= batch_task->batch_size); > + assert(batch_task->status == DSA_TASK_READY); > + > + batch_task->status = DSA_TASK_PROCESSING; > + > + ret = submit_wi_int(device_instance->work_queue, > + &batch_task->batch_descriptor); > + if (ret != 0) > + return ret; > + > + return dsa_task_enqueue(device_group, batch_task); > +} At this point in the series submit_wi_async() and submit_batch_wi_async() look the same to me without the asserts. Can't we consolidate them? There's also the fact that both functions receive a _batch_ task but one is supposed to work in batches and the other is not. That could be solved by renaming the structure I guess. > + > /** > * @brief Check if DSA is running. > * > @@ -301,6 +495,8 @@ void dsa_stop(void) > if (!group->running) { > return; > } > + > + dsa_empty_task_queue(group); > } > > /**
On Tue, Dec 12, 2023 at 8:10 AM Fabiano Rosas <farosas@suse.de> wrote: > > Hao Xiang <hao.xiang@bytedance.com> writes: > > > * Use a safe thread queue for DSA task enqueue/dequeue. > > * Implement DSA task submission. > > * Implement DSA batch task submission. > > > > Signed-off-by: Hao Xiang <hao.xiang@bytedance.com> > > --- > > include/qemu/dsa.h | 35 ++++++++ > > util/dsa.c | 196 +++++++++++++++++++++++++++++++++++++++++++++ > > 2 files changed, 231 insertions(+) > > > > diff --git a/include/qemu/dsa.h b/include/qemu/dsa.h > > index 30246b507e..23f55185be 100644 > > --- a/include/qemu/dsa.h > > +++ b/include/qemu/dsa.h > > @@ -12,6 +12,41 @@ > > #include <linux/idxd.h> > > #include "x86intrin.h" > > > > +enum dsa_task_type { > > Our coding style requires CamelCase for enums and typedef'ed structures. When I wrote this, I found numerous instances where snake case and no typedef enum are used. But I do see the camel case and typedef'ed instances now. Converted to that. > > > + DSA_TASK = 0, > > + DSA_BATCH_TASK > > +}; > > + > > +enum dsa_task_status { > > + DSA_TASK_READY = 0, > > + DSA_TASK_PROCESSING, > > + DSA_TASK_COMPLETION > > +}; > > + > > +typedef void (*buffer_zero_dsa_completion_fn)(void *); > > We don't really need the "buffer_zero" mention in any of this > code. Simply dsa_batch_task or batch_task would suffice. I removed "buffer_zero" prefix in some of the places. > > > + > > +typedef struct buffer_zero_batch_task { > > + struct dsa_hw_desc batch_descriptor; > > + struct dsa_hw_desc *descriptors; > > + struct dsa_completion_record batch_completion __attribute__((aligned(32))); > > + struct dsa_completion_record *completions; > > + struct dsa_device_group *group; > > + struct dsa_device *device; > > + buffer_zero_dsa_completion_fn completion_callback; > > + QemuSemaphore sem_task_complete; > > + enum dsa_task_type task_type; > > + enum dsa_task_status status; > > + bool *results; > > + int batch_size; > > + QSIMPLEQ_ENTRY(buffer_zero_batch_task) entry; > > +} buffer_zero_batch_task; > > I see data specific to this implementation and data coming from the > library, maybe these would be better organized in two separate > structures with the qemu-specific having a pointer to the generic > one. Looking ahead in the series, there seems to be migration data > coming into this as well. I refactored to create a generic structure batch_task and a DSA specific version dsa_batch_task. batch_task has a pointer to dsa_batch_task if DSA compilation option is enabled. > > > + > > +#else > > + > > +struct buffer_zero_batch_task { > > + bool *results; > > +}; > > + > > #endif > > > > /** > > diff --git a/util/dsa.c b/util/dsa.c > > index 8edaa892ec..f82282ce99 100644 > > --- a/util/dsa.c > > +++ b/util/dsa.c > > @@ -245,6 +245,200 @@ dsa_device_group_get_next_device(struct dsa_device_group *group) > > return &group->dsa_devices[current]; > > } > > > > +/** > > + * @brief Empties out the DSA task queue. > > + * > > + * @param group A pointer to the DSA device group. > > + */ > > +static void > > +dsa_empty_task_queue(struct dsa_device_group *group) > > +{ > > + qemu_mutex_lock(&group->task_queue_lock); > > + dsa_task_queue *task_queue = &group->task_queue; > > + while (!QSIMPLEQ_EMPTY(task_queue)) { > > + QSIMPLEQ_REMOVE_HEAD(task_queue, entry); > > + } > > + qemu_mutex_unlock(&group->task_queue_lock); > > +} > > + > > +/** > > + * @brief Adds a task to the DSA task queue. > > + * > > + * @param group A pointer to the DSA device group. > > + * @param context A pointer to the DSA task to enqueue. > > + * > > + * @return int Zero if successful, otherwise a proper error code. > > + */ > > +static int > > +dsa_task_enqueue(struct dsa_device_group *group, > > + struct buffer_zero_batch_task *task) > > +{ > > + dsa_task_queue *task_queue = &group->task_queue; > > + QemuMutex *task_queue_lock = &group->task_queue_lock; > > + QemuCond *task_queue_cond = &group->task_queue_cond; > > + > > + bool notify = false; > > + > > + qemu_mutex_lock(task_queue_lock); > > + > > + if (!group->running) { > > + fprintf(stderr, "DSA: Tried to queue task to stopped device queue\n"); > > + qemu_mutex_unlock(task_queue_lock); > > + return -1; > > + } > > + > > + // The queue is empty. This enqueue operation is a 0->1 transition. > > + if (QSIMPLEQ_EMPTY(task_queue)) > > + notify = true; > > + > > + QSIMPLEQ_INSERT_TAIL(task_queue, task, entry); > > + > > + // We need to notify the waiter for 0->1 transitions. > > + if (notify) > > + qemu_cond_signal(task_queue_cond); > > + > > + qemu_mutex_unlock(task_queue_lock); > > + > > + return 0; > > +} > > + > > +/** > > + * @brief Takes a DSA task out of the task queue. > > + * > > + * @param group A pointer to the DSA device group. > > + * @return buffer_zero_batch_task* The DSA task being dequeued. > > + */ > > +__attribute__((unused)) > > +static struct buffer_zero_batch_task * > > +dsa_task_dequeue(struct dsa_device_group *group) > > +{ > > + struct buffer_zero_batch_task *task = NULL; > > + dsa_task_queue *task_queue = &group->task_queue; > > + QemuMutex *task_queue_lock = &group->task_queue_lock; > > + QemuCond *task_queue_cond = &group->task_queue_cond; > > + > > + qemu_mutex_lock(task_queue_lock); > > + > > + while (true) { > > + if (!group->running) > > + goto exit; > > + task = QSIMPLEQ_FIRST(task_queue); > > + if (task != NULL) { > > + break; > > + } > > + qemu_cond_wait(task_queue_cond, task_queue_lock); > > + } > > + > > + QSIMPLEQ_REMOVE_HEAD(task_queue, entry); > > + > > +exit: > > + qemu_mutex_unlock(task_queue_lock); > > + return task; > > +} > > + > > +/** > > + * @brief Submits a DSA work item to the device work queue. > > + * > > + * @param wq A pointer to the DSA work queue's device memory. > > + * @param descriptor A pointer to the DSA work item descriptor. > > + * > > + * @return Zero if successful, non-zero otherwise. > > + */ > > +static int > > +submit_wi_int(void *wq, struct dsa_hw_desc *descriptor) > > +{ > > + uint64_t retry = 0; > > + > > + _mm_sfence(); > > + > > + while (true) { > > + if (_enqcmd(wq, descriptor) == 0) { > > + break; > > + } > > + retry++; > > + if (retry > max_retry_count) { > > 'max_retry_count' is UINT64_MAX so 'retry' will wrap around. > > > + fprintf(stderr, "Submit work retry %lu times.\n", retry); > > + exit(1); > > Is this not the case where we'd fallback to the CPU? "retry" here means _enqcmd returned a failure because the shared DSA queue is full. When we run out of retry counts, we definitely have a bug that prevents any DSA task from completing. So this situation is really not expected and we don't want to fallback to use CPU. > > You should not exit() here, but return non-zero as the documentation > mentions and the callers expect. I will propagate this error all the way up to multifd_send_thread. > > > + } > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * @brief Synchronously submits a DSA work item to the > > + * device work queue. > > + * > > + * @param wq A pointer to the DSA worjk queue's device memory. > > + * @param descriptor A pointer to the DSA work item descriptor. > > + * > > + * @return int Zero if successful, non-zero otherwise. > > + */ > > +__attribute__((unused)) > > +static int > > +submit_wi(void *wq, struct dsa_hw_desc *descriptor) > > +{ > > + return submit_wi_int(wq, descriptor); > > +} > > + > > +/** > > + * @brief Asynchronously submits a DSA work item to the > > + * device work queue. > > + * > > + * @param task A pointer to the buffer zero task. > > + * > > + * @return int Zero if successful, non-zero otherwise. > > + */ > > +__attribute__((unused)) > > +static int > > +submit_wi_async(struct buffer_zero_batch_task *task) > > +{ > > + struct dsa_device_group *device_group = task->group; > > + struct dsa_device *device_instance = task->device; > > + int ret; > > + > > + assert(task->task_type == DSA_TASK); > > + > > + task->status = DSA_TASK_PROCESSING; > > + > > + ret = submit_wi_int(device_instance->work_queue, > > + &task->descriptors[0]); > > + if (ret != 0) > > + return ret; > > + > > + return dsa_task_enqueue(device_group, task); > > +} > > + > > +/** > > + * @brief Asynchronously submits a DSA batch work item to the > > + * device work queue. > > + * > > + * @param batch_task A pointer to the batch buffer zero task. > > + * > > + * @return int Zero if successful, non-zero otherwise. > > + */ > > +__attribute__((unused)) > > +static int > > +submit_batch_wi_async(struct buffer_zero_batch_task *batch_task) > > +{ > > + struct dsa_device_group *device_group = batch_task->group; > > + struct dsa_device *device_instance = batch_task->device; > > + int ret; > > + > > + assert(batch_task->task_type == DSA_BATCH_TASK); > > + assert(batch_task->batch_descriptor.desc_count <= batch_task->batch_size); > > + assert(batch_task->status == DSA_TASK_READY); > > + > > + batch_task->status = DSA_TASK_PROCESSING; > > + > > + ret = submit_wi_int(device_instance->work_queue, > > + &batch_task->batch_descriptor); > > + if (ret != 0) > > + return ret; > > + > > + return dsa_task_enqueue(device_group, batch_task); > > +} > > At this point in the series submit_wi_async() and > submit_batch_wi_async() look the same to me without the asserts. Can't > we consolidate them? > > There's also the fact that both functions receive a _batch_ task but one > is supposed to work in batches and the other is not. That could be > solved by renaming the structure I guess. So we do need to have two functions to handle a single task and a batch task respectively. This is due to how DSA is designed at the lower level. When we submit a task to DSA hardware, the task description can be an individual task or a batch task containing a pointer to an array of individual tasks. The workflow tries to aggregate a lot of individual tasks and put them into a batch task. However, there are times when only 1 task is available but DSA doesn't accept a batch task description with only 1 individual task in it so we always need a path to submit an individual task. I used to have two data structures representing an individual task and a batch task but I converged them into the batch task right now. The two functions are just using different fields of the same structure to process individual task vs batch task. submit_wi_async and submit_batch_wi_async are different on the actual descriptor passed into the submit_wi_int call. Yes, the two functions look similar but they are not completely the same and because its implementation is so simple it doesn't worth adding a unified helper layer to have them both calling that helper layer. I went back and forth between the current implementation and the solution you suggested but ended up using the current implementation. But let me know if you still prefer a converged helper function. > > > + > > /** > > * @brief Check if DSA is running. > > * > > @@ -301,6 +495,8 @@ void dsa_stop(void) > > if (!group->running) { > > return; > > } > > + > > + dsa_empty_task_queue(group); > > } > > > > /**
© 2016 - 2024 Red Hat, Inc.