This includes:
- LSR, ROR
- ASR
- SWAP
- SBI, CBI
- BST, BLD
- BSET, BCLR
Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
---
target/avr/translate.c | 1123 ++++++++++++++++++++++++++++++++++++++++
1 file changed, 1123 insertions(+)
diff --git a/target/avr/translate.c b/target/avr/translate.c
index 48a42c984a..dc6a1af2fc 100644
--- a/target/avr/translate.c
+++ b/target/avr/translate.c
@@ -317,6 +317,15 @@ static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
}
+static void gen_rshift_ZNVSf(TCGv R)
+{
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+ tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+ tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+
/*
* Adds two registers without the C Flag and places the result in the
* destination register Rd.
@@ -1508,3 +1517,1117 @@ static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a)
return true;
}
+
+/*
+ * This instruction makes a copy of one register into another. The source
+ * register Rr is left unchanged, while the destination register Rd is loaded
+ * with a copy of Rr.
+ */
+static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+
+ tcg_gen_mov_tl(Rd, Rr);
+
+ return true;
+}
+
+
+/*
+ * This instruction makes a copy of one register pair into another register
+ * pair. The source register pair Rr+1:Rr is left unchanged, while the
+ * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This
+ * instruction is not available in all devices. Refer to the device specific
+ * instruction set summary.
+ */
+static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
+ return true;
+ }
+
+ TCGv RdL = cpu_r[a->rd];
+ TCGv RdH = cpu_r[a->rd + 1];
+ TCGv RrL = cpu_r[a->rr];
+ TCGv RrH = cpu_r[a->rr + 1];
+
+ tcg_gen_mov_tl(RdH, RrH);
+ tcg_gen_mov_tl(RdL, RrL);
+
+ return true;
+}
+
+
+/*
+ * Loads an 8 bit constant directly to register 16 to 31.
+ */
+static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ int imm = a->imm;
+
+ tcg_gen_movi_tl(Rd, imm);
+
+ return true;
+}
+
+
+/*
+ * Loads one byte from the data space to a register. For parts with SRAM,
+ * the data space consists of the Register File, I/O memory and internal SRAM
+ * (and external SRAM if applicable). For parts without SRAM, the data space
+ * consists of the register file only. The EEPROM has a separate address space.
+ * A 16-bit address must be supplied. Memory access is limited to the current
+ * data segment of 64KB. The LDS instruction uses the RAMPD Register to access
+ * memory above 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPD in register in the I/O area has to be changed.
+ * This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_rampD;
+ a->imm = next_word(ctx);
+
+ tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+ tcg_gen_shli_tl(addr, addr, 16);
+ tcg_gen_ori_tl(addr, addr, a->imm);
+
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+/*
+ * Loads one byte indirect from the data space to a register. For parts
+ * with SRAM, the data space consists of the Register File, I/O memory and
+ * internal SRAM (and external SRAM if applicable). For parts without SRAM, the
+ * data space consists of the Register File only. In some parts the Flash
+ * Memory has been mapped to the data space and can be read using this command.
+ * The EEPROM has a separate address space. The data location is pointed to by
+ * the X (16 bits) Pointer Register in the Register File. Memory access is
+ * limited to the current data segment of 64KB. To access another data segment
+ * in devices with more than 64KB data space, the RAMPX in register in the I/O
+ * area has to be changed. The X-pointer Register can either be left unchanged
+ * by the operation, or it can be post-incremented or predecremented. These
+ * features are especially suited for accessing arrays, tables, and Stack
+ * Pointer usage of the X-pointer Register. Note that only the low byte of the
+ * X-pointer is updated in devices with no more than 256 bytes data space. For
+ * such devices, the high byte of the pointer is not used by this instruction
+ * and can be used for other purposes. The RAMPX Register in the I/O area is
+ * updated in parts with more than 64KB data space or more than 64KB Program
+ * memory, and the increment/decrement is added to the entire 24-bit address on
+ * such devices. Not all variants of this instruction is available in all
+ * devices. Refer to the device specific instruction set summary. In the
+ * Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ * operation as LPM since the program memory is mapped to the data memory
+ * space.
+ */
+static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_load(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_xaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_load(ctx, Rd, addr);
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
+{
+ TCGv Rd = cpu_r[a->rr];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
+{
+ TCGv Rd = cpu_r[a->rr];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
+{
+ TCGv Rd = cpu_r[a->rr];
+ TCGv addr = gen_get_xaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_store(ctx, Rd, addr);
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+/*
+ * Loads one byte indirect with or without displacement from the data space
+ * to a register. For parts with SRAM, the data space consists of the Register
+ * File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ * parts without SRAM, the data space consists of the Register File only. In
+ * some parts the Flash Memory has been mapped to the data space and can be
+ * read using this command. The EEPROM has a separate address space. The data
+ * location is pointed to by the Y (16 bits) Pointer Register in the Register
+ * File. Memory access is limited to the current data segment of 64KB. To
+ * access another data segment in devices with more than 64KB data space, the
+ * RAMPY in register in the I/O area has to be changed. The Y-pointer Register
+ * can either be left unchanged by the operation, or it can be post-incremented
+ * or predecremented. These features are especially suited for accessing
+ * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
+ * only the low byte of the Y-pointer is updated in devices with no more than
+ * 256 bytes data space. For such devices, the high byte of the pointer is not
+ * used by this instruction and can be used for other purposes. The RAMPY
+ * Register in the I/O area is updated in parts with more than 64KB data space
+ * or more than 64KB Program memory, and the increment/decrement/displacement
+ * is added to the entire 24-bit address on such devices. Not all variants of
+ * this instruction is available in all devices. Refer to the device specific
+ * instruction set summary. In the Reduced Core tinyAVR the LD instruction can
+ * be used to achieve the same operation as LPM since the program memory is
+ * mapped to the data memory space.
+ */
+static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ gen_data_load(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_load(ctx, Rd, addr);
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_store(ctx, Rd, addr);
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+/*
+ * Loads one byte indirect with or without displacement from the data space
+ * to a register. For parts with SRAM, the data space consists of the Register
+ * File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ * parts without SRAM, the data space consists of the Register File only. In
+ * some parts the Flash Memory has been mapped to the data space and can be
+ * read using this command. The EEPROM has a separate address space. The data
+ * location is pointed to by the Z (16 bits) Pointer Register in the Register
+ * File. Memory access is limited to the current data segment of 64KB. To
+ * access another data segment in devices with more than 64KB data space, the
+ * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register
+ * can either be left unchanged by the operation, or it can be post-incremented
+ * or predecremented. These features are especially suited for Stack Pointer
+ * usage of the Z-pointer Register, however because the Z-pointer Register can
+ * be used for indirect subroutine calls, indirect jumps and table lookup, it
+ * is often more convenient to use the X or Y-pointer as a dedicated Stack
+ * Pointer. Note that only the low byte of the Z-pointer is updated in devices
+ * with no more than 256 bytes data space. For such devices, the high byte of
+ * the pointer is not used by this instruction and can be used for other
+ * purposes. The RAMPZ Register in the I/O area is updated in parts with more
+ * than 64KB data space or more than 64KB Program memory, and the
+ * increment/decrement/displacement is added to the entire 24-bit address on
+ * such devices. Not all variants of this instruction is available in all
+ * devices. Refer to the device specific instruction set summary. In the
+ * Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ * operation as LPM since the program memory is mapped to the data memory
+ * space. For using the Z-pointer for table lookup in Program memory see the
+ * LPM and ELPM instructions.
+ */
+static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ gen_data_load(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_load(ctx, Rd, addr);
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_store(ctx, Rd, addr);
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+
+/*
+ * Stores one byte from a Register to the data space. For parts with SRAM,
+ * the data space consists of the Register File, I/O memory and internal SRAM
+ * (and external SRAM if applicable). For parts without SRAM, the data space
+ * consists of the Register File only. The EEPROM has a separate address space.
+ * A 16-bit address must be supplied. Memory access is limited to the current
+ * data segment of 64KB. The STS instruction uses the RAMPD Register to access
+ * memory above 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPD in register in the I/O area has to be changed.
+ * This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_STS(DisasContext *ctx, arg_STS *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_rampD;
+ a->imm = next_word(ctx);
+
+ tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+ tcg_gen_shli_tl(addr, addr, 16);
+ tcg_gen_ori_tl(addr, addr, a->imm);
+
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+/*
+ * Loads one byte pointed to by the Z-register into the destination
+ * register Rd. This instruction features a 100% space effective constant
+ * initialization or constant data fetch. The Program memory is organized in
+ * 16-bit words while the Z-pointer is a byte address. Thus, the least
+ * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
+ * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
+ * Program memory. The Zpointer Register can either be left unchanged by the
+ * operation, or it can be incremented. The incrementation does not apply to
+ * the RAMPZ Register. Devices with Self-Programming capability can use the
+ * LPM instruction to read the Fuse and Lock bit values. Refer to the device
+ * documentation for a detailed description. The LPM instruction is not
+ * available in all devices. Refer to the device specific instruction set
+ * summary
+ */
+static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
+ return true;
+ }
+
+ TCGv Rd = cpu_r[0];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_r[31];
+ TCGv L = cpu_r[30];
+
+ tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+ tcg_gen_or_tl(addr, addr, L);
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_r[31];
+ TCGv L = cpu_r[30];
+
+ tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+ tcg_gen_or_tl(addr, addr, L);
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_r[31];
+ TCGv L = cpu_r[30];
+
+ tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+ tcg_gen_or_tl(addr, addr, L);
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ tcg_gen_andi_tl(L, addr, 0xff);
+
+ tcg_gen_shri_tl(addr, addr, 8);
+ tcg_gen_andi_tl(H, addr, 0xff);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+/*
+ * Loads one byte pointed to by the Z-register and the RAMPZ Register in
+ * the I/O space, and places this byte in the destination register Rd. This
+ * instruction features a 100% space effective constant initialization or
+ * constant data fetch. The Program memory is organized in 16-bit words while
+ * the Z-pointer is a byte address. Thus, the least significant bit of the
+ * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
+ * instruction can address the entire Program memory space. The Z-pointer
+ * Register can either be left unchanged by the operation, or it can be
+ * incremented. The incrementation applies to the entire 24-bit concatenation
+ * of the RAMPZ and Z-pointer Registers. Devices with Self-Programming
+ * capability can use the ELPM instruction to read the Fuse and Lock bit value.
+ * Refer to the device documentation for a detailed description. This
+ * instruction is not available in all devices. Refer to the device specific
+ * instruction set summary.
+ */
+static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
+ return true;
+ }
+
+ TCGv Rd = cpu_r[0];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+/*
+ * SPM can be used to erase a page in the Program memory, to write a page
+ * in the Program memory (that is already erased), and to set Boot Loader Lock
+ * bits. In some devices, the Program memory can be written one word at a time,
+ * in other devices an entire page can be programmed simultaneously after first
+ * filling a temporary page buffer. In all cases, the Program memory must be
+ * erased one page at a time. When erasing the Program memory, the RAMPZ and
+ * Z-register are used as page address. When writing the Program memory, the
+ * RAMPZ and Z-register are used as page or word address, and the R1:R0
+ * register pair is used as data(1). When setting the Boot Loader Lock bits,
+ * the R1:R0 register pair is used as data. Refer to the device documentation
+ * for detailed description of SPM usage. This instruction can address the
+ * entire Program memory. The SPM instruction is not available in all devices.
+ * Refer to the device specific instruction set summary. Note: 1. R1
+ * determines the instruction high byte, and R0 determines the instruction low
+ * byte.
+ */
+static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
+{
+ /* TODO */
+ if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
+ return true;
+ }
+
+ return true;
+}
+
+
+static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
+{
+ /* TODO */
+ if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
+ return true;
+ }
+
+ return true;
+}
+
+
+/*
+ * Loads data from the I/O Space (Ports, Timers, Configuration Registers,
+ * etc.) into register Rd in the Register File.
+ */
+static bool trans_IN(DisasContext *ctx, arg_IN *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv port = tcg_const_i32(a->imm);
+
+ gen_helper_inb(Rd, cpu_env, port);
+
+ tcg_temp_free_i32(port);
+
+ return true;
+}
+
+
+/*
+ * Stores data from register Rr in the Register File to I/O Space (Ports,
+ * Timers, Configuration Registers, etc.).
+ */
+static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv port = tcg_const_i32(a->imm);
+
+ gen_helper_outb(cpu_env, port, Rd);
+
+ tcg_temp_free_i32(port);
+
+ return true;
+}
+
+
+/*
+ * This instruction stores the contents of register Rr on the STACK. The
+ * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is
+ * not available in all devices. Refer to the device specific instruction set
+ * summary.
+ */
+static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ gen_data_store(ctx, Rd, cpu_sp);
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+ return true;
+}
+
+
+/*
+ * This instruction loads register Rd with a byte from the STACK. The Stack
+ * Pointer is pre-incremented by 1 before the POP. This instruction is not
+ * available in all devices. Refer to the device specific instruction set
+ * summary.
+ */
+static bool trans_POP(DisasContext *ctx, arg_POP *a)
+{
+ /*
+ * Using a temp to work around some strange behaviour:
+ * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+ * gen_data_load(ctx, Rd, cpu_sp);
+ * seems to cause the add to happen twice.
+ * This doesn't happen if either the add or the load is removed.
+ */
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_addi_tl(t1, cpu_sp, 1);
+ gen_data_load(ctx, Rd, t1);
+ tcg_gen_mov_tl(cpu_sp, t1);
+
+ return true;
+}
+
+
+/*
+ * Exchanges one byte indirect between register and data space. The data
+ * location is pointed to by the Z (16 bits) Pointer Register in the Register
+ * File. Memory access is limited to the current data segment of 64KB. To
+ * access another data segment in devices with more than 64KB data space, the
+ * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register
+ * is left unchanged by the operation. This instruction is especially suited
+ * for writing/reading status bits stored in SRAM.
+ */
+static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv addr = gen_get_zaddr();
+
+ gen_data_load(ctx, t0, addr);
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_mov_tl(Rd, t0);
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+/*
+ * Load one byte indirect from data space to register and set bits in data
+ * space specified by the register. The instruction can only be used towards
+ * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer
+ * Register in the Register File. Memory access is limited to the current data
+ * segment of 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ * The Z-pointer Register is left unchanged by the operation. This instruction
+ * is especially suited for setting status bits stored in SRAM.
+ */
+static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
+ return true;
+ }
+
+ TCGv Rr = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+ tcg_gen_or_tl(t1, t0, Rr);
+
+ tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+/*
+ * Load one byte indirect from data space to register and stores and clear
+ * the bits in data space specified by the register. The instruction can
+ * only be used towards internal SRAM. The data location is pointed to by
+ * the Z (16 bits) Pointer Register in the Register File. Memory access is
+ * limited to the current data segment of 64KB. To access another data
+ * segment in devices with more than 64KB data space, the RAMPZ in register
+ * in the I/O area has to be changed. The Z-pointer Register is left
+ * unchanged by the operation. This instruction is especially suited for
+ * clearing status bits stored in SRAM.
+ */
+static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
+ return true;
+ }
+
+ TCGv Rr = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+ /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
+ tcg_gen_andc_tl(t1, t0, Rr);
+
+ tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+/*
+ * Load one byte indirect from data space to register and toggles bits in
+ * the data space specified by the register. The instruction can only be used
+ * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer
+ * Register in the Register File. Memory access is limited to the current data
+ * segment of 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ * The Z-pointer Register is left unchanged by the operation. This instruction
+ * is especially suited for changing status bits stored in SRAM.
+ */
+static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+ tcg_gen_xor_tl(t1, t0, Rd);
+
+ tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
+ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+
+/*
+ * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
+ * loaded into the C Flag of the SREG. This operation effectively divides an
+ * unsigned value by two. The C Flag can be used to round the result.
+ */
+static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+
+ tcg_gen_shri_tl(Rd, Rd, 1);
+
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
+ tcg_gen_movi_tl(cpu_Nf, 0);
+ tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
+ tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
+
+ return true;
+}
+
+
+/*
+ * Shifts all bits in Rd one place to the right. The C Flag is shifted into
+ * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined
+ * with ASR, effectively divides multi-byte signed values by two. Combined with
+ * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag
+ * can be used to round the result.
+ */
+static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+
+ tcg_gen_shli_tl(t0, cpu_Cf, 7);
+ tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+ tcg_gen_shri_tl(Rd, Rd, 1);
+ tcg_gen_or_tl(Rd, Rd, t0);
+
+ gen_rshift_ZNVSf(Rd);
+
+ tcg_temp_free_i32(t0);
+
+ return true;
+}
+
+
+/*
+ * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
+ * is loaded into the C Flag of the SREG. This operation effectively divides a
+ * signed value by two without changing its sign. The Carry Flag can be used to
+ * round the result.
+ */
+static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+
+ /* Cf */
+ tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
+
+ /* op */
+ tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
+ tcg_gen_shri_tl(Rd, Rd, 1);
+ tcg_gen_or_tl(Rd, Rd, t0);
+
+ gen_rshift_ZNVSf(Rd);
+
+ tcg_temp_free_i32(t0);
+
+ return true;
+}
+
+
+/*
+ * Swaps high and low nibbles in a register.
+ */
+static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_andi_tl(t0, Rd, 0x0f);
+ tcg_gen_shli_tl(t0, t0, 4);
+ tcg_gen_andi_tl(t1, Rd, 0xf0);
+ tcg_gen_shri_tl(t1, t1, 4);
+ tcg_gen_or_tl(Rd, t0, t1);
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+
+ return true;
+}
+
+
+/*
+ * Sets a specified bit in an I/O Register. This instruction operates on
+ * the lower 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
+{
+ TCGv data = tcg_temp_new_i32();
+ TCGv port = tcg_const_i32(a->reg);
+
+ gen_helper_inb(data, cpu_env, port);
+ tcg_gen_ori_tl(data, data, 1 << a->bit);
+ gen_helper_outb(cpu_env, port, data);
+
+ tcg_temp_free_i32(port);
+ tcg_temp_free_i32(data);
+
+ return true;
+}
+
+
+/*
+ * Clears a specified bit in an I/O Register. This instruction operates on
+ * the lower 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
+{
+ TCGv data = tcg_temp_new_i32();
+ TCGv port = tcg_const_i32(a->reg);
+
+ gen_helper_inb(data, cpu_env, port);
+ tcg_gen_andi_tl(data, data, ~(1 << a->bit));
+ gen_helper_outb(cpu_env, port, data);
+
+ tcg_temp_free_i32(data);
+ tcg_temp_free_i32(port);
+
+ return true;
+}
+
+
+/*
+ * Stores bit b from Rd to the T Flag in SREG (Status Register).
+ */
+static bool trans_BST(DisasContext *ctx, arg_BST *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
+ tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
+
+ return true;
+}
+
+
+/*
+ * Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
+ */
+static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
+ tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
+ tcg_gen_or_tl(Rd, Rd, t1);
+
+ tcg_temp_free_i32(t1);
+
+ return true;
+}
+
+
+/*
+ * Sets a single Flag or bit in SREG.
+ */
+static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
+{
+ switch (a->bit) {
+ case 0x00:
+ tcg_gen_movi_tl(cpu_Cf, 0x01);
+ break;
+ case 0x01:
+ tcg_gen_movi_tl(cpu_Zf, 0x01);
+ break;
+ case 0x02:
+ tcg_gen_movi_tl(cpu_Nf, 0x01);
+ break;
+ case 0x03:
+ tcg_gen_movi_tl(cpu_Vf, 0x01);
+ break;
+ case 0x04:
+ tcg_gen_movi_tl(cpu_Sf, 0x01);
+ break;
+ case 0x05:
+ tcg_gen_movi_tl(cpu_Hf, 0x01);
+ break;
+ case 0x06:
+ tcg_gen_movi_tl(cpu_Tf, 0x01);
+ break;
+ case 0x07:
+ tcg_gen_movi_tl(cpu_If, 0x01);
+ break;
+ }
+
+ return true;
+}
+
+
+/*
+ * Clears a single Flag in SREG.
+ */
+static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
+{
+ switch (a->bit) {
+ case 0x00:
+ tcg_gen_movi_tl(cpu_Cf, 0x00);
+ break;
+ case 0x01:
+ tcg_gen_movi_tl(cpu_Zf, 0x00);
+ break;
+ case 0x02:
+ tcg_gen_movi_tl(cpu_Nf, 0x00);
+ break;
+ case 0x03:
+ tcg_gen_movi_tl(cpu_Vf, 0x00);
+ break;
+ case 0x04:
+ tcg_gen_movi_tl(cpu_Sf, 0x00);
+ break;
+ case 0x05:
+ tcg_gen_movi_tl(cpu_Hf, 0x00);
+ break;
+ case 0x06:
+ tcg_gen_movi_tl(cpu_Tf, 0x00);
+ break;
+ case 0x07:
+ tcg_gen_movi_tl(cpu_If, 0x00);
+ break;
+ }
+
+ return true;
+}
--
2.17.2 (Apple Git-113)
On Wednesday, November 27, 2019, Michael Rolnik <mrolnik@gmail.com> wrote:
> This includes:
> - LSR, ROR
> - ASR
> - SWAP
> - SBI, CBI
> - BST, BLD
> - BSET, BCLR
>
> Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
> ---
> target/avr/translate.c | 1123 ++++++++++++++++++++++++++++++++++++++++
> 1 file changed, 1123 insertions(+)
>
>
Hello, Michael
I said I am on vacation, and truly I am, but, fir the next version if the
series, I would like to ask you to extract "data transfer" instruction (as
defined in avr docs, MOV LD ST etc) from this patch, and create a new patch
for them - so that the patches follow the division from docs.
Yours,
Aleksandar
> diff --git a/target/avr/translate.c b/target/avr/translate.c
> index 48a42c984a..dc6a1af2fc 100644
> --- a/target/avr/translate.c
> +++ b/target/avr/translate.c
> @@ -317,6 +317,15 @@ static void gen_goto_tb(DisasContext *ctx, int n,
> target_ulong dest)
> }
>
>
> +static void gen_rshift_ZNVSf(TCGv R)
> +{
> + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
> + tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
> + tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
> + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
> +}
> +
> +
> /*
> * Adds two registers without the C Flag and places the result in the
> * destination register Rd.
> @@ -1508,3 +1517,1117 @@ static bool trans_BRBS(DisasContext *ctx,
> arg_BRBS *a)
> return true;
> }
>
> +
> +/*
> + * This instruction makes a copy of one register into another. The source
> + * register Rr is left unchanged, while the destination register Rd is
> loaded
> + * with a copy of Rr.
> + */
> +static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv Rr = cpu_r[a->rr];
> +
> + tcg_gen_mov_tl(Rd, Rr);
> +
> + return true;
> +}
> +
> +
> +/*
> + * This instruction makes a copy of one register pair into another
> register
> + * pair. The source register pair Rr+1:Rr is left unchanged, while the
> + * destination register pair Rd+1:Rd is loaded with a copy of Rr +
> 1:Rr. This
> + * instruction is not available in all devices. Refer to the device
> specific
> + * instruction set summary.
> + */
> +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
> +{
> + if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
> + return true;
> + }
> +
> + TCGv RdL = cpu_r[a->rd];
> + TCGv RdH = cpu_r[a->rd + 1];
> + TCGv RrL = cpu_r[a->rr];
> + TCGv RrH = cpu_r[a->rr + 1];
> +
> + tcg_gen_mov_tl(RdH, RrH);
> + tcg_gen_mov_tl(RdL, RrL);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Loads an 8 bit constant directly to register 16 to 31.
> + */
> +static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + int imm = a->imm;
> +
> + tcg_gen_movi_tl(Rd, imm);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Loads one byte from the data space to a register. For parts with SRAM,
> + * the data space consists of the Register File, I/O memory and internal
> SRAM
> + * (and external SRAM if applicable). For parts without SRAM, the data
> space
> + * consists of the register file only. The EEPROM has a separate address
> space.
> + * A 16-bit address must be supplied. Memory access is limited to the
> current
> + * data segment of 64KB. The LDS instruction uses the RAMPD Register to
> access
> + * memory above 64KB. To access another data segment in devices with
> more than
> + * 64KB data space, the RAMPD in register in the I/O area has to be
> changed.
> + * This instruction is not available in all devices. Refer to the device
> + * specific instruction set summary.
> + */
> +static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = tcg_temp_new_i32();
> + TCGv H = cpu_rampD;
> + a->imm = next_word(ctx);
> +
> + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
> + tcg_gen_shli_tl(addr, addr, 16);
> + tcg_gen_ori_tl(addr, addr, a->imm);
> +
> + gen_data_load(ctx, Rd, addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Loads one byte indirect from the data space to a register. For parts
> + * with SRAM, the data space consists of the Register File, I/O memory
> and
> + * internal SRAM (and external SRAM if applicable). For parts without
> SRAM, the
> + * data space consists of the Register File only. In some parts the Flash
> + * Memory has been mapped to the data space and can be read using this
> command.
> + * The EEPROM has a separate address space. The data location is
> pointed to by
> + * the X (16 bits) Pointer Register in the Register File. Memory access
> is
> + * limited to the current data segment of 64KB. To access another data
> segment
> + * in devices with more than 64KB data space, the RAMPX in register in
> the I/O
> + * area has to be changed. The X-pointer Register can either be left
> unchanged
> + * by the operation, or it can be post-incremented or predecremented.
> These
> + * features are especially suited for accessing arrays, tables, and Stack
> + * Pointer usage of the X-pointer Register. Note that only the low byte
> of the
> + * X-pointer is updated in devices with no more than 256 bytes data
> space. For
> + * such devices, the high byte of the pointer is not used by this
> instruction
> + * and can be used for other purposes. The RAMPX Register in the I/O
> area is
> + * updated in parts with more than 64KB data space or more than 64KB
> Program
> + * memory, and the increment/decrement is added to the entire 24-bit
> address on
> + * such devices. Not all variants of this instruction is available in
> all
> + * devices. Refer to the device specific instruction set summary. In the
> + * Reduced Core tinyAVR the LD instruction can be used to achieve the
> same
> + * operation as LPM since the program memory is mapped to the data memory
> + * space.
> + */
> +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_xaddr();
> +
> + gen_data_load(ctx, Rd, addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_xaddr();
> +
> + gen_data_load(ctx, Rd, addr);
> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> + gen_set_xaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_xaddr();
> +
> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> + gen_data_load(ctx, Rd, addr);
> + gen_set_xaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
> +{
> + TCGv Rd = cpu_r[a->rr];
> + TCGv addr = gen_get_xaddr();
> +
> + gen_data_store(ctx, Rd, addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
> +{
> + TCGv Rd = cpu_r[a->rr];
> + TCGv addr = gen_get_xaddr();
> +
> + gen_data_store(ctx, Rd, addr);
> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> + gen_set_xaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
> +{
> + TCGv Rd = cpu_r[a->rr];
> + TCGv addr = gen_get_xaddr();
> +
> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> + gen_data_store(ctx, Rd, addr);
> + gen_set_xaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Loads one byte indirect with or without displacement from the data
> space
> + * to a register. For parts with SRAM, the data space consists of the
> Register
> + * File, I/O memory and internal SRAM (and external SRAM if applicable).
> For
> + * parts without SRAM, the data space consists of the Register File
> only. In
> + * some parts the Flash Memory has been mapped to the data space and can
> be
> + * read using this command. The EEPROM has a separate address space.
> The data
> + * location is pointed to by the Y (16 bits) Pointer Register in the
> Register
> + * File. Memory access is limited to the current data segment of 64KB. To
> + * access another data segment in devices with more than 64KB data
> space, the
> + * RAMPY in register in the I/O area has to be changed. The Y-pointer
> Register
> + * can either be left unchanged by the operation, or it can be
> post-incremented
> + * or predecremented. These features are especially suited for accessing
> + * arrays, tables, and Stack Pointer usage of the Y-pointer Register.
> Note that
> + * only the low byte of the Y-pointer is updated in devices with no more
> than
> + * 256 bytes data space. For such devices, the high byte of the pointer
> is not
> + * used by this instruction and can be used for other purposes. The RAMPY
> + * Register in the I/O area is updated in parts with more than 64KB data
> space
> + * or more than 64KB Program memory, and the increment/decrement/
> displacement
> + * is added to the entire 24-bit address on such devices. Not all
> variants of
> + * this instruction is available in all devices. Refer to the device
> specific
> + * instruction set summary. In the Reduced Core tinyAVR the LD
> instruction can
> + * be used to achieve the same operation as LPM since the program memory
> is
> + * mapped to the data memory space.
> + */
> +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_yaddr();
> +
> + gen_data_load(ctx, Rd, addr);
> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> + gen_set_yaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_yaddr();
> +
> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> + gen_data_load(ctx, Rd, addr);
> + gen_set_yaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_yaddr();
> +
> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
> + gen_data_load(ctx, Rd, addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_yaddr();
> +
> + gen_data_store(ctx, Rd, addr);
> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> + gen_set_yaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_yaddr();
> +
> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> + gen_data_store(ctx, Rd, addr);
> + gen_set_yaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_yaddr();
> +
> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
> + gen_data_store(ctx, Rd, addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Loads one byte indirect with or without displacement from the data
> space
> + * to a register. For parts with SRAM, the data space consists of the
> Register
> + * File, I/O memory and internal SRAM (and external SRAM if applicable).
> For
> + * parts without SRAM, the data space consists of the Register File
> only. In
> + * some parts the Flash Memory has been mapped to the data space and can
> be
> + * read using this command. The EEPROM has a separate address space.
> The data
> + * location is pointed to by the Z (16 bits) Pointer Register in the
> Register
> + * File. Memory access is limited to the current data segment of 64KB. To
> + * access another data segment in devices with more than 64KB data
> space, the
> + * RAMPZ in register in the I/O area has to be changed. The Z-pointer
> Register
> + * can either be left unchanged by the operation, or it can be
> post-incremented
> + * or predecremented. These features are especially suited for Stack
> Pointer
> + * usage of the Z-pointer Register, however because the Z-pointer
> Register can
> + * be used for indirect subroutine calls, indirect jumps and table
> lookup, it
> + * is often more convenient to use the X or Y-pointer as a dedicated
> Stack
> + * Pointer. Note that only the low byte of the Z-pointer is updated in
> devices
> + * with no more than 256 bytes data space. For such devices, the high
> byte of
> + * the pointer is not used by this instruction and can be used for other
> + * purposes. The RAMPZ Register in the I/O area is updated in parts with
> more
> + * than 64KB data space or more than 64KB Program memory, and the
> + * increment/decrement/displacement is added to the entire 24-bit
> address on
> + * such devices. Not all variants of this instruction is available in
> all
> + * devices. Refer to the device specific instruction set summary. In the
> + * Reduced Core tinyAVR the LD instruction can be used to achieve the
> same
> + * operation as LPM since the program memory is mapped to the data memory
> + * space. For using the Z-pointer for table lookup in Program memory
> see the
> + * LPM and ELPM instructions.
> + */
> +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_zaddr();
> +
> + gen_data_load(ctx, Rd, addr);
> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> + gen_set_zaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_zaddr();
> +
> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> + gen_data_load(ctx, Rd, addr);
> +
> + gen_set_zaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_zaddr();
> +
> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
> + gen_data_load(ctx, Rd, addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_zaddr();
> +
> + gen_data_store(ctx, Rd, addr);
> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> + gen_set_zaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_zaddr();
> +
> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> + gen_data_store(ctx, Rd, addr);
> +
> + gen_set_zaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_zaddr();
> +
> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
> + gen_data_store(ctx, Rd, addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +
> +/*
> + * Stores one byte from a Register to the data space. For parts with
> SRAM,
> + * the data space consists of the Register File, I/O memory and internal
> SRAM
> + * (and external SRAM if applicable). For parts without SRAM, the data
> space
> + * consists of the Register File only. The EEPROM has a separate address
> space.
> + * A 16-bit address must be supplied. Memory access is limited to the
> current
> + * data segment of 64KB. The STS instruction uses the RAMPD Register to
> access
> + * memory above 64KB. To access another data segment in devices with
> more than
> + * 64KB data space, the RAMPD in register in the I/O area has to be
> changed.
> + * This instruction is not available in all devices. Refer to the device
> + * specific instruction set summary.
> + */
> +static bool trans_STS(DisasContext *ctx, arg_STS *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = tcg_temp_new_i32();
> + TCGv H = cpu_rampD;
> + a->imm = next_word(ctx);
> +
> + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
> + tcg_gen_shli_tl(addr, addr, 16);
> + tcg_gen_ori_tl(addr, addr, a->imm);
> +
> + gen_data_store(ctx, Rd, addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Loads one byte pointed to by the Z-register into the destination
> + * register Rd. This instruction features a 100% space effective constant
> + * initialization or constant data fetch. The Program memory is
> organized in
> + * 16-bit words while the Z-pointer is a byte address. Thus, the least
> + * significant bit of the Z-pointer selects either low byte (ZLSB = 0)
> or high
> + * byte (ZLSB = 1). This instruction can address the first 64KB (32K
> words) of
> + * Program memory. The Zpointer Register can either be left unchanged by
> the
> + * operation, or it can be incremented. The incrementation does not
> apply to
> + * the RAMPZ Register. Devices with Self-Programming capability can use
> the
> + * LPM instruction to read the Fuse and Lock bit values. Refer to the
> device
> + * documentation for a detailed description. The LPM instruction is not
> + * available in all devices. Refer to the device specific instruction set
> + * summary
> + */
> +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
> +{
> + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
> + return true;
> + }
> +
> + TCGv Rd = cpu_r[0];
> + TCGv addr = tcg_temp_new_i32();
> + TCGv H = cpu_r[31];
> + TCGv L = cpu_r[30];
> +
> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
> + tcg_gen_or_tl(addr, addr, L);
> +
> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
> +{
> + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
> + return true;
> + }
> +
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = tcg_temp_new_i32();
> + TCGv H = cpu_r[31];
> + TCGv L = cpu_r[30];
> +
> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
> + tcg_gen_or_tl(addr, addr, L);
> +
> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
> +{
> + if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
> + return true;
> + }
> +
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = tcg_temp_new_i32();
> + TCGv H = cpu_r[31];
> + TCGv L = cpu_r[30];
> +
> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
> + tcg_gen_or_tl(addr, addr, L);
> +
> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> + tcg_gen_andi_tl(L, addr, 0xff);
> +
> + tcg_gen_shri_tl(addr, addr, 8);
> + tcg_gen_andi_tl(H, addr, 0xff);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Loads one byte pointed to by the Z-register and the RAMPZ Register in
> + * the I/O space, and places this byte in the destination register Rd.
> This
> + * instruction features a 100% space effective constant initialization or
> + * constant data fetch. The Program memory is organized in 16-bit words
> while
> + * the Z-pointer is a byte address. Thus, the least significant bit of
> the
> + * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1).
> This
> + * instruction can address the entire Program memory space. The Z-pointer
> + * Register can either be left unchanged by the operation, or it can be
> + * incremented. The incrementation applies to the entire 24-bit
> concatenation
> + * of the RAMPZ and Z-pointer Registers. Devices with Self-Programming
> + * capability can use the ELPM instruction to read the Fuse and Lock bit
> value.
> + * Refer to the device documentation for a detailed description. This
> + * instruction is not available in all devices. Refer to the device
> specific
> + * instruction set summary.
> + */
> +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
> +{
> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
> + return true;
> + }
> +
> + TCGv Rd = cpu_r[0];
> + TCGv addr = gen_get_zaddr();
> +
> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
> +{
> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
> + return true;
> + }
> +
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_zaddr();
> +
> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
> +{
> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
> + return true;
> + }
> +
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_zaddr();
> +
> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> + gen_set_zaddr(addr);
> +
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +/*
> + * SPM can be used to erase a page in the Program memory, to write a page
> + * in the Program memory (that is already erased), and to set Boot
> Loader Lock
> + * bits. In some devices, the Program memory can be written one word at
> a time,
> + * in other devices an entire page can be programmed simultaneously
> after first
> + * filling a temporary page buffer. In all cases, the Program memory
> must be
> + * erased one page at a time. When erasing the Program memory, the RAMPZ
> and
> + * Z-register are used as page address. When writing the Program memory,
> the
> + * RAMPZ and Z-register are used as page or word address, and the R1:R0
> + * register pair is used as data(1). When setting the Boot Loader Lock
> bits,
> + * the R1:R0 register pair is used as data. Refer to the device
> documentation
> + * for detailed description of SPM usage. This instruction can address
> the
> + * entire Program memory. The SPM instruction is not available in all
> devices.
> + * Refer to the device specific instruction set summary. Note: 1. R1
> + * determines the instruction high byte, and R0 determines the
> instruction low
> + * byte.
> + */
> +static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
> +{
> + /* TODO */
> + if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
> + return true;
> + }
> +
> + return true;
> +}
> +
> +
> +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
> +{
> + /* TODO */
> + if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
> + return true;
> + }
> +
> + return true;
> +}
> +
> +
> +/*
> + * Loads data from the I/O Space (Ports, Timers, Configuration Registers,
> + * etc.) into register Rd in the Register File.
> + */
> +static bool trans_IN(DisasContext *ctx, arg_IN *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv port = tcg_const_i32(a->imm);
> +
> + gen_helper_inb(Rd, cpu_env, port);
> +
> + tcg_temp_free_i32(port);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Stores data from register Rr in the Register File to I/O Space (Ports,
> + * Timers, Configuration Registers, etc.).
> + */
> +static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv port = tcg_const_i32(a->imm);
> +
> + gen_helper_outb(cpu_env, port, Rd);
> +
> + tcg_temp_free_i32(port);
> +
> + return true;
> +}
> +
> +
> +/*
> + * This instruction stores the contents of register Rr on the STACK. The
> + * Stack Pointer is post-decremented by 1 after the PUSH. This
> instruction is
> + * not available in all devices. Refer to the device specific
> instruction set
> + * summary.
> + */
> +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> +
> + gen_data_store(ctx, Rd, cpu_sp);
> + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
> +
> + return true;
> +}
> +
> +
> +/*
> + * This instruction loads register Rd with a byte from the STACK. The
> Stack
> + * Pointer is pre-incremented by 1 before the POP. This instruction is
> not
> + * available in all devices. Refer to the device specific instruction set
> + * summary.
> + */
> +static bool trans_POP(DisasContext *ctx, arg_POP *a)
> +{
> + /*
> + * Using a temp to work around some strange behaviour:
> + * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
> + * gen_data_load(ctx, Rd, cpu_sp);
> + * seems to cause the add to happen twice.
> + * This doesn't happen if either the add or the load is removed.
> + */
> + TCGv t1 = tcg_temp_new_i32();
> + TCGv Rd = cpu_r[a->rd];
> +
> + tcg_gen_addi_tl(t1, cpu_sp, 1);
> + gen_data_load(ctx, Rd, t1);
> + tcg_gen_mov_tl(cpu_sp, t1);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Exchanges one byte indirect between register and data space. The data
> + * location is pointed to by the Z (16 bits) Pointer Register in the
> Register
> + * File. Memory access is limited to the current data segment of 64KB. To
> + * access another data segment in devices with more than 64KB data
> space, the
> + * RAMPZ in register in the I/O area has to be changed. The Z-pointer
> Register
> + * is left unchanged by the operation. This instruction is especially
> suited
> + * for writing/reading status bits stored in SRAM.
> + */
> +static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
> +{
> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
> + return true;
> + }
> +
> + TCGv Rd = cpu_r[a->rd];
> + TCGv t0 = tcg_temp_new_i32();
> + TCGv addr = gen_get_zaddr();
> +
> + gen_data_load(ctx, t0, addr);
> + gen_data_store(ctx, Rd, addr);
> + tcg_gen_mov_tl(Rd, t0);
> +
> + tcg_temp_free_i32(t0);
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Load one byte indirect from data space to register and set bits in
> data
> + * space specified by the register. The instruction can only be used
> towards
> + * internal SRAM. The data location is pointed to by the Z (16 bits)
> Pointer
> + * Register in the Register File. Memory access is limited to the
> current data
> + * segment of 64KB. To access another data segment in devices with more
> than
> + * 64KB data space, the RAMPZ in register in the I/O area has to be
> changed.
> + * The Z-pointer Register is left unchanged by the operation. This
> instruction
> + * is especially suited for setting status bits stored in SRAM.
> + */
> +static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
> +{
> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
> + return true;
> + }
> +
> + TCGv Rr = cpu_r[a->rd];
> + TCGv addr = gen_get_zaddr();
> + TCGv t0 = tcg_temp_new_i32();
> + TCGv t1 = tcg_temp_new_i32();
> +
> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
> + tcg_gen_or_tl(t1, t0, Rr);
> +
> + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
> +
> + tcg_temp_free_i32(t1);
> + tcg_temp_free_i32(t0);
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Load one byte indirect from data space to register and stores and
> clear
> + * the bits in data space specified by the register. The instruction can
> + * only be used towards internal SRAM. The data location is pointed to
> by
> + * the Z (16 bits) Pointer Register in the Register File. Memory access
> is
> + * limited to the current data segment of 64KB. To access another data
> + * segment in devices with more than 64KB data space, the RAMPZ in
> register
> + * in the I/O area has to be changed. The Z-pointer Register is left
> + * unchanged by the operation. This instruction is especially suited for
> + * clearing status bits stored in SRAM.
> + */
> +static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
> +{
> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
> + return true;
> + }
> +
> + TCGv Rr = cpu_r[a->rd];
> + TCGv addr = gen_get_zaddr();
> + TCGv t0 = tcg_temp_new_i32();
> + TCGv t1 = tcg_temp_new_i32();
> +
> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
> + /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
> + tcg_gen_andc_tl(t1, t0, Rr);
> +
> + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
> +
> + tcg_temp_free_i32(t1);
> + tcg_temp_free_i32(t0);
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Load one byte indirect from data space to register and toggles bits in
> + * the data space specified by the register. The instruction can only
> be used
> + * towards SRAM. The data location is pointed to by the Z (16 bits)
> Pointer
> + * Register in the Register File. Memory access is limited to the
> current data
> + * segment of 64KB. To access another data segment in devices with more
> than
> + * 64KB data space, the RAMPZ in register in the I/O area has to be
> changed.
> + * The Z-pointer Register is left unchanged by the operation. This
> instruction
> + * is especially suited for changing status bits stored in SRAM.
> + */
> +static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
> +{
> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
> + return true;
> + }
> +
> + TCGv Rd = cpu_r[a->rd];
> + TCGv addr = gen_get_zaddr();
> + TCGv t0 = tcg_temp_new_i32();
> + TCGv t1 = tcg_temp_new_i32();
> +
> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
> + tcg_gen_xor_tl(t1, t0, Rd);
> +
> + tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
> +
> + tcg_temp_free_i32(t1);
> + tcg_temp_free_i32(t0);
> + tcg_temp_free_i32(addr);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0
> is
> + * loaded into the C Flag of the SREG. This operation effectively
> divides an
> + * unsigned value by two. The C Flag can be used to round the result.
> + */
> +static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> +
> + tcg_gen_andi_tl(cpu_Cf, Rd, 1);
> +
> + tcg_gen_shri_tl(Rd, Rd, 1);
> +
> + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
> + tcg_gen_movi_tl(cpu_Nf, 0);
> + tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
> + tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Shifts all bits in Rd one place to the right. The C Flag is shifted
> into
> + * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation,
> combined
> + * with ASR, effectively divides multi-byte signed values by two.
> Combined with
> + * LSR it effectively divides multi-byte unsigned values by two. The
> Carry Flag
> + * can be used to round the result.
> + */
> +static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv t0 = tcg_temp_new_i32();
> +
> + tcg_gen_shli_tl(t0, cpu_Cf, 7);
> + tcg_gen_andi_tl(cpu_Cf, Rd, 1);
> + tcg_gen_shri_tl(Rd, Rd, 1);
> + tcg_gen_or_tl(Rd, Rd, t0);
> +
> + gen_rshift_ZNVSf(Rd);
> +
> + tcg_temp_free_i32(t0);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Shifts all bits in Rd one place to the right. Bit 7 is held constant.
> Bit 0
> + * is loaded into the C Flag of the SREG. This operation effectively
> divides a
> + * signed value by two without changing its sign. The Carry Flag can be
> used to
> + * round the result.
> + */
> +static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv t0 = tcg_temp_new_i32();
> +
> + /* Cf */
> + tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
> +
> + /* op */
> + tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
> + tcg_gen_shri_tl(Rd, Rd, 1);
> + tcg_gen_or_tl(Rd, Rd, t0);
> +
> + gen_rshift_ZNVSf(Rd);
> +
> + tcg_temp_free_i32(t0);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Swaps high and low nibbles in a register.
> + */
> +static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv t0 = tcg_temp_new_i32();
> + TCGv t1 = tcg_temp_new_i32();
> +
> + tcg_gen_andi_tl(t0, Rd, 0x0f);
> + tcg_gen_shli_tl(t0, t0, 4);
> + tcg_gen_andi_tl(t1, Rd, 0xf0);
> + tcg_gen_shri_tl(t1, t1, 4);
> + tcg_gen_or_tl(Rd, t0, t1);
> +
> + tcg_temp_free_i32(t1);
> + tcg_temp_free_i32(t0);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Sets a specified bit in an I/O Register. This instruction operates on
> + * the lower 32 I/O Registers -- addresses 0-31.
> + */
> +static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
> +{
> + TCGv data = tcg_temp_new_i32();
> + TCGv port = tcg_const_i32(a->reg);
> +
> + gen_helper_inb(data, cpu_env, port);
> + tcg_gen_ori_tl(data, data, 1 << a->bit);
> + gen_helper_outb(cpu_env, port, data);
> +
> + tcg_temp_free_i32(port);
> + tcg_temp_free_i32(data);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Clears a specified bit in an I/O Register. This instruction operates
> on
> + * the lower 32 I/O Registers -- addresses 0-31.
> + */
> +static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
> +{
> + TCGv data = tcg_temp_new_i32();
> + TCGv port = tcg_const_i32(a->reg);
> +
> + gen_helper_inb(data, cpu_env, port);
> + tcg_gen_andi_tl(data, data, ~(1 << a->bit));
> + gen_helper_outb(cpu_env, port, data);
> +
> + tcg_temp_free_i32(data);
> + tcg_temp_free_i32(port);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Stores bit b from Rd to the T Flag in SREG (Status Register).
> + */
> +static bool trans_BST(DisasContext *ctx, arg_BST *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> +
> + tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
> + tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Copies the T Flag in the SREG (Status Register) to bit b in register
> Rd.
> + */
> +static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
> +{
> + TCGv Rd = cpu_r[a->rd];
> + TCGv t1 = tcg_temp_new_i32();
> +
> + tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
> + tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
> + tcg_gen_or_tl(Rd, Rd, t1);
> +
> + tcg_temp_free_i32(t1);
> +
> + return true;
> +}
> +
> +
> +/*
> + * Sets a single Flag or bit in SREG.
> + */
> +static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
> +{
> + switch (a->bit) {
> + case 0x00:
> + tcg_gen_movi_tl(cpu_Cf, 0x01);
> + break;
> + case 0x01:
> + tcg_gen_movi_tl(cpu_Zf, 0x01);
> + break;
> + case 0x02:
> + tcg_gen_movi_tl(cpu_Nf, 0x01);
> + break;
> + case 0x03:
> + tcg_gen_movi_tl(cpu_Vf, 0x01);
> + break;
> + case 0x04:
> + tcg_gen_movi_tl(cpu_Sf, 0x01);
> + break;
> + case 0x05:
> + tcg_gen_movi_tl(cpu_Hf, 0x01);
> + break;
> + case 0x06:
> + tcg_gen_movi_tl(cpu_Tf, 0x01);
> + break;
> + case 0x07:
> + tcg_gen_movi_tl(cpu_If, 0x01);
> + break;
> + }
> +
> + return true;
> +}
> +
> +
> +/*
> + * Clears a single Flag in SREG.
> + */
> +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
> +{
> + switch (a->bit) {
> + case 0x00:
> + tcg_gen_movi_tl(cpu_Cf, 0x00);
> + break;
> + case 0x01:
> + tcg_gen_movi_tl(cpu_Zf, 0x00);
> + break;
> + case 0x02:
> + tcg_gen_movi_tl(cpu_Nf, 0x00);
> + break;
> + case 0x03:
> + tcg_gen_movi_tl(cpu_Vf, 0x00);
> + break;
> + case 0x04:
> + tcg_gen_movi_tl(cpu_Sf, 0x00);
> + break;
> + case 0x05:
> + tcg_gen_movi_tl(cpu_Hf, 0x00);
> + break;
> + case 0x06:
> + tcg_gen_movi_tl(cpu_Tf, 0x00);
> + break;
> + case 0x07:
> + tcg_gen_movi_tl(cpu_If, 0x00);
> + break;
> + }
> +
> + return true;
> +}
> --
> 2.17.2 (Apple Git-113)
>
>
I think they do follow the division in the docs.
On Thu, Dec 5, 2019 at 2:28 PM Aleksandar Markovic <
aleksandar.m.mail@gmail.com> wrote:
>
>
> On Wednesday, November 27, 2019, Michael Rolnik <mrolnik@gmail.com> wrote:
>
>> This includes:
>> - LSR, ROR
>> - ASR
>> - SWAP
>> - SBI, CBI
>> - BST, BLD
>> - BSET, BCLR
>>
>> Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
>> ---
>> target/avr/translate.c | 1123 ++++++++++++++++++++++++++++++++++++++++
>> 1 file changed, 1123 insertions(+)
>>
>>
> Hello, Michael
>
> I said I am on vacation, and truly I am, but, fir the next version if the
> series, I would like to ask you to extract "data transfer" instruction (as
> defined in avr docs, MOV LD ST etc) from this patch, and create a new patch
> for them - so that the patches follow the division from docs.
>
> Yours,
> Aleksandar
>
>
>
>
>
>> diff --git a/target/avr/translate.c b/target/avr/translate.c
>> index 48a42c984a..dc6a1af2fc 100644
>> --- a/target/avr/translate.c
>> +++ b/target/avr/translate.c
>> @@ -317,6 +317,15 @@ static void gen_goto_tb(DisasContext *ctx, int n,
>> target_ulong dest)
>> }
>>
>>
>> +static void gen_rshift_ZNVSf(TCGv R)
>> +{
>> + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
>> + tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
>> + tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
>> + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
>> +}
>> +
>> +
>> /*
>> * Adds two registers without the C Flag and places the result in the
>> * destination register Rd.
>> @@ -1508,3 +1517,1117 @@ static bool trans_BRBS(DisasContext *ctx,
>> arg_BRBS *a)
>> return true;
>> }
>>
>> +
>> +/*
>> + * This instruction makes a copy of one register into another. The
>> source
>> + * register Rr is left unchanged, while the destination register Rd is
>> loaded
>> + * with a copy of Rr.
>> + */
>> +static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv Rr = cpu_r[a->rr];
>> +
>> + tcg_gen_mov_tl(Rd, Rr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * This instruction makes a copy of one register pair into another
>> register
>> + * pair. The source register pair Rr+1:Rr is left unchanged, while the
>> + * destination register pair Rd+1:Rd is loaded with a copy of Rr +
>> 1:Rr. This
>> + * instruction is not available in all devices. Refer to the device
>> specific
>> + * instruction set summary.
>> + */
>> +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
>> +{
>> + if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
>> + return true;
>> + }
>> +
>> + TCGv RdL = cpu_r[a->rd];
>> + TCGv RdH = cpu_r[a->rd + 1];
>> + TCGv RrL = cpu_r[a->rr];
>> + TCGv RrH = cpu_r[a->rr + 1];
>> +
>> + tcg_gen_mov_tl(RdH, RrH);
>> + tcg_gen_mov_tl(RdL, RrL);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Loads an 8 bit constant directly to register 16 to 31.
>> + */
>> +static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + int imm = a->imm;
>> +
>> + tcg_gen_movi_tl(Rd, imm);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Loads one byte from the data space to a register. For parts with
>> SRAM,
>> + * the data space consists of the Register File, I/O memory and
>> internal SRAM
>> + * (and external SRAM if applicable). For parts without SRAM, the data
>> space
>> + * consists of the register file only. The EEPROM has a separate
>> address space.
>> + * A 16-bit address must be supplied. Memory access is limited to the
>> current
>> + * data segment of 64KB. The LDS instruction uses the RAMPD Register to
>> access
>> + * memory above 64KB. To access another data segment in devices with
>> more than
>> + * 64KB data space, the RAMPD in register in the I/O area has to be
>> changed.
>> + * This instruction is not available in all devices. Refer to the device
>> + * specific instruction set summary.
>> + */
>> +static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = tcg_temp_new_i32();
>> + TCGv H = cpu_rampD;
>> + a->imm = next_word(ctx);
>> +
>> + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
>> + tcg_gen_shli_tl(addr, addr, 16);
>> + tcg_gen_ori_tl(addr, addr, a->imm);
>> +
>> + gen_data_load(ctx, Rd, addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Loads one byte indirect from the data space to a register. For parts
>> + * with SRAM, the data space consists of the Register File, I/O memory
>> and
>> + * internal SRAM (and external SRAM if applicable). For parts without
>> SRAM, the
>> + * data space consists of the Register File only. In some parts the
>> Flash
>> + * Memory has been mapped to the data space and can be read using this
>> command.
>> + * The EEPROM has a separate address space. The data location is
>> pointed to by
>> + * the X (16 bits) Pointer Register in the Register File. Memory access
>> is
>> + * limited to the current data segment of 64KB. To access another data
>> segment
>> + * in devices with more than 64KB data space, the RAMPX in register in
>> the I/O
>> + * area has to be changed. The X-pointer Register can either be left
>> unchanged
>> + * by the operation, or it can be post-incremented or predecremented.
>> These
>> + * features are especially suited for accessing arrays, tables, and
>> Stack
>> + * Pointer usage of the X-pointer Register. Note that only the low byte
>> of the
>> + * X-pointer is updated in devices with no more than 256 bytes data
>> space. For
>> + * such devices, the high byte of the pointer is not used by this
>> instruction
>> + * and can be used for other purposes. The RAMPX Register in the I/O
>> area is
>> + * updated in parts with more than 64KB data space or more than 64KB
>> Program
>> + * memory, and the increment/decrement is added to the entire 24-bit
>> address on
>> + * such devices. Not all variants of this instruction is available in
>> all
>> + * devices. Refer to the device specific instruction set summary. In
>> the
>> + * Reduced Core tinyAVR the LD instruction can be used to achieve the
>> same
>> + * operation as LPM since the program memory is mapped to the data
>> memory
>> + * space.
>> + */
>> +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_xaddr();
>> +
>> + gen_data_load(ctx, Rd, addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_xaddr();
>> +
>> + gen_data_load(ctx, Rd, addr);
>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> + gen_set_xaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_xaddr();
>> +
>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> + gen_data_load(ctx, Rd, addr);
>> + gen_set_xaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rr];
>> + TCGv addr = gen_get_xaddr();
>> +
>> + gen_data_store(ctx, Rd, addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rr];
>> + TCGv addr = gen_get_xaddr();
>> +
>> + gen_data_store(ctx, Rd, addr);
>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> + gen_set_xaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rr];
>> + TCGv addr = gen_get_xaddr();
>> +
>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> + gen_data_store(ctx, Rd, addr);
>> + gen_set_xaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Loads one byte indirect with or without displacement from the data
>> space
>> + * to a register. For parts with SRAM, the data space consists of the
>> Register
>> + * File, I/O memory and internal SRAM (and external SRAM if
>> applicable). For
>> + * parts without SRAM, the data space consists of the Register File
>> only. In
>> + * some parts the Flash Memory has been mapped to the data space and
>> can be
>> + * read using this command. The EEPROM has a separate address space.
>> The data
>> + * location is pointed to by the Y (16 bits) Pointer Register in the
>> Register
>> + * File. Memory access is limited to the current data segment of 64KB.
>> To
>> + * access another data segment in devices with more than 64KB data
>> space, the
>> + * RAMPY in register in the I/O area has to be changed. The Y-pointer
>> Register
>> + * can either be left unchanged by the operation, or it can be
>> post-incremented
>> + * or predecremented. These features are especially suited for
>> accessing
>> + * arrays, tables, and Stack Pointer usage of the Y-pointer Register.
>> Note that
>> + * only the low byte of the Y-pointer is updated in devices with no
>> more than
>> + * 256 bytes data space. For such devices, the high byte of the pointer
>> is not
>> + * used by this instruction and can be used for other purposes. The
>> RAMPY
>> + * Register in the I/O area is updated in parts with more than 64KB
>> data space
>> + * or more than 64KB Program memory, and the
>> increment/decrement/displacement
>> + * is added to the entire 24-bit address on such devices. Not all
>> variants of
>> + * this instruction is available in all devices. Refer to the device
>> specific
>> + * instruction set summary. In the Reduced Core tinyAVR the LD
>> instruction can
>> + * be used to achieve the same operation as LPM since the program
>> memory is
>> + * mapped to the data memory space.
>> + */
>> +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_yaddr();
>> +
>> + gen_data_load(ctx, Rd, addr);
>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> + gen_set_yaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_yaddr();
>> +
>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> + gen_data_load(ctx, Rd, addr);
>> + gen_set_yaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_yaddr();
>> +
>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>> + gen_data_load(ctx, Rd, addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_yaddr();
>> +
>> + gen_data_store(ctx, Rd, addr);
>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> + gen_set_yaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_yaddr();
>> +
>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> + gen_data_store(ctx, Rd, addr);
>> + gen_set_yaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_yaddr();
>> +
>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>> + gen_data_store(ctx, Rd, addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Loads one byte indirect with or without displacement from the data
>> space
>> + * to a register. For parts with SRAM, the data space consists of the
>> Register
>> + * File, I/O memory and internal SRAM (and external SRAM if
>> applicable). For
>> + * parts without SRAM, the data space consists of the Register File
>> only. In
>> + * some parts the Flash Memory has been mapped to the data space and
>> can be
>> + * read using this command. The EEPROM has a separate address space.
>> The data
>> + * location is pointed to by the Z (16 bits) Pointer Register in the
>> Register
>> + * File. Memory access is limited to the current data segment of 64KB.
>> To
>> + * access another data segment in devices with more than 64KB data
>> space, the
>> + * RAMPZ in register in the I/O area has to be changed. The Z-pointer
>> Register
>> + * can either be left unchanged by the operation, or it can be
>> post-incremented
>> + * or predecremented. These features are especially suited for Stack
>> Pointer
>> + * usage of the Z-pointer Register, however because the Z-pointer
>> Register can
>> + * be used for indirect subroutine calls, indirect jumps and table
>> lookup, it
>> + * is often more convenient to use the X or Y-pointer as a dedicated
>> Stack
>> + * Pointer. Note that only the low byte of the Z-pointer is updated in
>> devices
>> + * with no more than 256 bytes data space. For such devices, the high
>> byte of
>> + * the pointer is not used by this instruction and can be used for other
>> + * purposes. The RAMPZ Register in the I/O area is updated in parts
>> with more
>> + * than 64KB data space or more than 64KB Program memory, and the
>> + * increment/decrement/displacement is added to the entire 24-bit
>> address on
>> + * such devices. Not all variants of this instruction is available in
>> all
>> + * devices. Refer to the device specific instruction set summary. In
>> the
>> + * Reduced Core tinyAVR the LD instruction can be used to achieve the
>> same
>> + * operation as LPM since the program memory is mapped to the data
>> memory
>> + * space. For using the Z-pointer for table lookup in Program memory
>> see the
>> + * LPM and ELPM instructions.
>> + */
>> +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_zaddr();
>> +
>> + gen_data_load(ctx, Rd, addr);
>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> + gen_set_zaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_zaddr();
>> +
>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> + gen_data_load(ctx, Rd, addr);
>> +
>> + gen_set_zaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_zaddr();
>> +
>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>> + gen_data_load(ctx, Rd, addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_zaddr();
>> +
>> + gen_data_store(ctx, Rd, addr);
>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> + gen_set_zaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_zaddr();
>> +
>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> + gen_data_store(ctx, Rd, addr);
>> +
>> + gen_set_zaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_zaddr();
>> +
>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>> + gen_data_store(ctx, Rd, addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +
>> +/*
>> + * Stores one byte from a Register to the data space. For parts with
>> SRAM,
>> + * the data space consists of the Register File, I/O memory and
>> internal SRAM
>> + * (and external SRAM if applicable). For parts without SRAM, the data
>> space
>> + * consists of the Register File only. The EEPROM has a separate
>> address space.
>> + * A 16-bit address must be supplied. Memory access is limited to the
>> current
>> + * data segment of 64KB. The STS instruction uses the RAMPD Register to
>> access
>> + * memory above 64KB. To access another data segment in devices with
>> more than
>> + * 64KB data space, the RAMPD in register in the I/O area has to be
>> changed.
>> + * This instruction is not available in all devices. Refer to the device
>> + * specific instruction set summary.
>> + */
>> +static bool trans_STS(DisasContext *ctx, arg_STS *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = tcg_temp_new_i32();
>> + TCGv H = cpu_rampD;
>> + a->imm = next_word(ctx);
>> +
>> + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
>> + tcg_gen_shli_tl(addr, addr, 16);
>> + tcg_gen_ori_tl(addr, addr, a->imm);
>> +
>> + gen_data_store(ctx, Rd, addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Loads one byte pointed to by the Z-register into the destination
>> + * register Rd. This instruction features a 100% space effective
>> constant
>> + * initialization or constant data fetch. The Program memory is
>> organized in
>> + * 16-bit words while the Z-pointer is a byte address. Thus, the least
>> + * significant bit of the Z-pointer selects either low byte (ZLSB = 0)
>> or high
>> + * byte (ZLSB = 1). This instruction can address the first 64KB (32K
>> words) of
>> + * Program memory. The Zpointer Register can either be left unchanged
>> by the
>> + * operation, or it can be incremented. The incrementation does not
>> apply to
>> + * the RAMPZ Register. Devices with Self-Programming capability can
>> use the
>> + * LPM instruction to read the Fuse and Lock bit values. Refer to the
>> device
>> + * documentation for a detailed description. The LPM instruction is not
>> + * available in all devices. Refer to the device specific instruction
>> set
>> + * summary
>> + */
>> +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
>> +{
>> + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>> + return true;
>> + }
>> +
>> + TCGv Rd = cpu_r[0];
>> + TCGv addr = tcg_temp_new_i32();
>> + TCGv H = cpu_r[31];
>> + TCGv L = cpu_r[30];
>> +
>> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>> + tcg_gen_or_tl(addr, addr, L);
>> +
>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
>> +{
>> + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>> + return true;
>> + }
>> +
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = tcg_temp_new_i32();
>> + TCGv H = cpu_r[31];
>> + TCGv L = cpu_r[30];
>> +
>> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>> + tcg_gen_or_tl(addr, addr, L);
>> +
>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
>> +{
>> + if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
>> + return true;
>> + }
>> +
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = tcg_temp_new_i32();
>> + TCGv H = cpu_r[31];
>> + TCGv L = cpu_r[30];
>> +
>> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>> + tcg_gen_or_tl(addr, addr, L);
>> +
>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> + tcg_gen_andi_tl(L, addr, 0xff);
>> +
>> + tcg_gen_shri_tl(addr, addr, 8);
>> + tcg_gen_andi_tl(H, addr, 0xff);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Loads one byte pointed to by the Z-register and the RAMPZ Register in
>> + * the I/O space, and places this byte in the destination register Rd.
>> This
>> + * instruction features a 100% space effective constant initialization
>> or
>> + * constant data fetch. The Program memory is organized in 16-bit words
>> while
>> + * the Z-pointer is a byte address. Thus, the least significant bit of
>> the
>> + * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB =
>> 1). This
>> + * instruction can address the entire Program memory space. The
>> Z-pointer
>> + * Register can either be left unchanged by the operation, or it can be
>> + * incremented. The incrementation applies to the entire 24-bit
>> concatenation
>> + * of the RAMPZ and Z-pointer Registers. Devices with Self-Programming
>> + * capability can use the ELPM instruction to read the Fuse and Lock
>> bit value.
>> + * Refer to the device documentation for a detailed description. This
>> + * instruction is not available in all devices. Refer to the device
>> specific
>> + * instruction set summary.
>> + */
>> +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
>> +{
>> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>> + return true;
>> + }
>> +
>> + TCGv Rd = cpu_r[0];
>> + TCGv addr = gen_get_zaddr();
>> +
>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
>> +{
>> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>> + return true;
>> + }
>> +
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_zaddr();
>> +
>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
>> +{
>> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
>> + return true;
>> + }
>> +
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_zaddr();
>> +
>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> + gen_set_zaddr(addr);
>> +
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * SPM can be used to erase a page in the Program memory, to write a
>> page
>> + * in the Program memory (that is already erased), and to set Boot
>> Loader Lock
>> + * bits. In some devices, the Program memory can be written one word at
>> a time,
>> + * in other devices an entire page can be programmed simultaneously
>> after first
>> + * filling a temporary page buffer. In all cases, the Program memory
>> must be
>> + * erased one page at a time. When erasing the Program memory, the
>> RAMPZ and
>> + * Z-register are used as page address. When writing the Program
>> memory, the
>> + * RAMPZ and Z-register are used as page or word address, and the R1:R0
>> + * register pair is used as data(1). When setting the Boot Loader Lock
>> bits,
>> + * the R1:R0 register pair is used as data. Refer to the device
>> documentation
>> + * for detailed description of SPM usage. This instruction can address
>> the
>> + * entire Program memory. The SPM instruction is not available in all
>> devices.
>> + * Refer to the device specific instruction set summary. Note: 1. R1
>> + * determines the instruction high byte, and R0 determines the
>> instruction low
>> + * byte.
>> + */
>> +static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
>> +{
>> + /* TODO */
>> + if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
>> + return true;
>> + }
>> +
>> + return true;
>> +}
>> +
>> +
>> +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
>> +{
>> + /* TODO */
>> + if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
>> + return true;
>> + }
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Loads data from the I/O Space (Ports, Timers, Configuration
>> Registers,
>> + * etc.) into register Rd in the Register File.
>> + */
>> +static bool trans_IN(DisasContext *ctx, arg_IN *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv port = tcg_const_i32(a->imm);
>> +
>> + gen_helper_inb(Rd, cpu_env, port);
>> +
>> + tcg_temp_free_i32(port);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Stores data from register Rr in the Register File to I/O Space
>> (Ports,
>> + * Timers, Configuration Registers, etc.).
>> + */
>> +static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv port = tcg_const_i32(a->imm);
>> +
>> + gen_helper_outb(cpu_env, port, Rd);
>> +
>> + tcg_temp_free_i32(port);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * This instruction stores the contents of register Rr on the STACK. The
>> + * Stack Pointer is post-decremented by 1 after the PUSH. This
>> instruction is
>> + * not available in all devices. Refer to the device specific
>> instruction set
>> + * summary.
>> + */
>> +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> +
>> + gen_data_store(ctx, Rd, cpu_sp);
>> + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * This instruction loads register Rd with a byte from the STACK. The
>> Stack
>> + * Pointer is pre-incremented by 1 before the POP. This instruction is
>> not
>> + * available in all devices. Refer to the device specific instruction
>> set
>> + * summary.
>> + */
>> +static bool trans_POP(DisasContext *ctx, arg_POP *a)
>> +{
>> + /*
>> + * Using a temp to work around some strange behaviour:
>> + * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
>> + * gen_data_load(ctx, Rd, cpu_sp);
>> + * seems to cause the add to happen twice.
>> + * This doesn't happen if either the add or the load is removed.
>> + */
>> + TCGv t1 = tcg_temp_new_i32();
>> + TCGv Rd = cpu_r[a->rd];
>> +
>> + tcg_gen_addi_tl(t1, cpu_sp, 1);
>> + gen_data_load(ctx, Rd, t1);
>> + tcg_gen_mov_tl(cpu_sp, t1);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Exchanges one byte indirect between register and data space. The
>> data
>> + * location is pointed to by the Z (16 bits) Pointer Register in the
>> Register
>> + * File. Memory access is limited to the current data segment of 64KB.
>> To
>> + * access another data segment in devices with more than 64KB data
>> space, the
>> + * RAMPZ in register in the I/O area has to be changed. The Z-pointer
>> Register
>> + * is left unchanged by the operation. This instruction is especially
>> suited
>> + * for writing/reading status bits stored in SRAM.
>> + */
>> +static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
>> +{
>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>> + return true;
>> + }
>> +
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv t0 = tcg_temp_new_i32();
>> + TCGv addr = gen_get_zaddr();
>> +
>> + gen_data_load(ctx, t0, addr);
>> + gen_data_store(ctx, Rd, addr);
>> + tcg_gen_mov_tl(Rd, t0);
>> +
>> + tcg_temp_free_i32(t0);
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Load one byte indirect from data space to register and set bits in
>> data
>> + * space specified by the register. The instruction can only be used
>> towards
>> + * internal SRAM. The data location is pointed to by the Z (16 bits)
>> Pointer
>> + * Register in the Register File. Memory access is limited to the
>> current data
>> + * segment of 64KB. To access another data segment in devices with more
>> than
>> + * 64KB data space, the RAMPZ in register in the I/O area has to be
>> changed.
>> + * The Z-pointer Register is left unchanged by the operation. This
>> instruction
>> + * is especially suited for setting status bits stored in SRAM.
>> + */
>> +static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
>> +{
>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>> + return true;
>> + }
>> +
>> + TCGv Rr = cpu_r[a->rd];
>> + TCGv addr = gen_get_zaddr();
>> + TCGv t0 = tcg_temp_new_i32();
>> + TCGv t1 = tcg_temp_new_i32();
>> +
>> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>> + tcg_gen_or_tl(t1, t0, Rr);
>> +
>> + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>> +
>> + tcg_temp_free_i32(t1);
>> + tcg_temp_free_i32(t0);
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Load one byte indirect from data space to register and stores and
>> clear
>> + * the bits in data space specified by the register. The instruction can
>> + * only be used towards internal SRAM. The data location is pointed to
>> by
>> + * the Z (16 bits) Pointer Register in the Register File. Memory access
>> is
>> + * limited to the current data segment of 64KB. To access another data
>> + * segment in devices with more than 64KB data space, the RAMPZ in
>> register
>> + * in the I/O area has to be changed. The Z-pointer Register is left
>> + * unchanged by the operation. This instruction is especially suited for
>> + * clearing status bits stored in SRAM.
>> + */
>> +static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
>> +{
>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>> + return true;
>> + }
>> +
>> + TCGv Rr = cpu_r[a->rd];
>> + TCGv addr = gen_get_zaddr();
>> + TCGv t0 = tcg_temp_new_i32();
>> + TCGv t1 = tcg_temp_new_i32();
>> +
>> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>> + /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
>> + tcg_gen_andc_tl(t1, t0, Rr);
>> +
>> + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>> +
>> + tcg_temp_free_i32(t1);
>> + tcg_temp_free_i32(t0);
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Load one byte indirect from data space to register and toggles bits
>> in
>> + * the data space specified by the register. The instruction can only
>> be used
>> + * towards SRAM. The data location is pointed to by the Z (16 bits)
>> Pointer
>> + * Register in the Register File. Memory access is limited to the
>> current data
>> + * segment of 64KB. To access another data segment in devices with more
>> than
>> + * 64KB data space, the RAMPZ in register in the I/O area has to be
>> changed.
>> + * The Z-pointer Register is left unchanged by the operation. This
>> instruction
>> + * is especially suited for changing status bits stored in SRAM.
>> + */
>> +static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
>> +{
>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>> + return true;
>> + }
>> +
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv addr = gen_get_zaddr();
>> + TCGv t0 = tcg_temp_new_i32();
>> + TCGv t1 = tcg_temp_new_i32();
>> +
>> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>> + tcg_gen_xor_tl(t1, t0, Rd);
>> +
>> + tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
>> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>> +
>> + tcg_temp_free_i32(t1);
>> + tcg_temp_free_i32(t0);
>> + tcg_temp_free_i32(addr);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit
>> 0 is
>> + * loaded into the C Flag of the SREG. This operation effectively
>> divides an
>> + * unsigned value by two. The C Flag can be used to round the result.
>> + */
>> +static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> +
>> + tcg_gen_andi_tl(cpu_Cf, Rd, 1);
>> +
>> + tcg_gen_shri_tl(Rd, Rd, 1);
>> +
>> + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
>> + tcg_gen_movi_tl(cpu_Nf, 0);
>> + tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
>> + tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Shifts all bits in Rd one place to the right. The C Flag is shifted
>> into
>> + * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation,
>> combined
>> + * with ASR, effectively divides multi-byte signed values by two.
>> Combined with
>> + * LSR it effectively divides multi-byte unsigned values by two. The
>> Carry Flag
>> + * can be used to round the result.
>> + */
>> +static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv t0 = tcg_temp_new_i32();
>> +
>> + tcg_gen_shli_tl(t0, cpu_Cf, 7);
>> + tcg_gen_andi_tl(cpu_Cf, Rd, 1);
>> + tcg_gen_shri_tl(Rd, Rd, 1);
>> + tcg_gen_or_tl(Rd, Rd, t0);
>> +
>> + gen_rshift_ZNVSf(Rd);
>> +
>> + tcg_temp_free_i32(t0);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Shifts all bits in Rd one place to the right. Bit 7 is held
>> constant. Bit 0
>> + * is loaded into the C Flag of the SREG. This operation effectively
>> divides a
>> + * signed value by two without changing its sign. The Carry Flag can be
>> used to
>> + * round the result.
>> + */
>> +static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv t0 = tcg_temp_new_i32();
>> +
>> + /* Cf */
>> + tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
>> +
>> + /* op */
>> + tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
>> + tcg_gen_shri_tl(Rd, Rd, 1);
>> + tcg_gen_or_tl(Rd, Rd, t0);
>> +
>> + gen_rshift_ZNVSf(Rd);
>> +
>> + tcg_temp_free_i32(t0);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Swaps high and low nibbles in a register.
>> + */
>> +static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv t0 = tcg_temp_new_i32();
>> + TCGv t1 = tcg_temp_new_i32();
>> +
>> + tcg_gen_andi_tl(t0, Rd, 0x0f);
>> + tcg_gen_shli_tl(t0, t0, 4);
>> + tcg_gen_andi_tl(t1, Rd, 0xf0);
>> + tcg_gen_shri_tl(t1, t1, 4);
>> + tcg_gen_or_tl(Rd, t0, t1);
>> +
>> + tcg_temp_free_i32(t1);
>> + tcg_temp_free_i32(t0);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Sets a specified bit in an I/O Register. This instruction operates on
>> + * the lower 32 I/O Registers -- addresses 0-31.
>> + */
>> +static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
>> +{
>> + TCGv data = tcg_temp_new_i32();
>> + TCGv port = tcg_const_i32(a->reg);
>> +
>> + gen_helper_inb(data, cpu_env, port);
>> + tcg_gen_ori_tl(data, data, 1 << a->bit);
>> + gen_helper_outb(cpu_env, port, data);
>> +
>> + tcg_temp_free_i32(port);
>> + tcg_temp_free_i32(data);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Clears a specified bit in an I/O Register. This instruction operates
>> on
>> + * the lower 32 I/O Registers -- addresses 0-31.
>> + */
>> +static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
>> +{
>> + TCGv data = tcg_temp_new_i32();
>> + TCGv port = tcg_const_i32(a->reg);
>> +
>> + gen_helper_inb(data, cpu_env, port);
>> + tcg_gen_andi_tl(data, data, ~(1 << a->bit));
>> + gen_helper_outb(cpu_env, port, data);
>> +
>> + tcg_temp_free_i32(data);
>> + tcg_temp_free_i32(port);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Stores bit b from Rd to the T Flag in SREG (Status Register).
>> + */
>> +static bool trans_BST(DisasContext *ctx, arg_BST *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> +
>> + tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
>> + tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Copies the T Flag in the SREG (Status Register) to bit b in register
>> Rd.
>> + */
>> +static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
>> +{
>> + TCGv Rd = cpu_r[a->rd];
>> + TCGv t1 = tcg_temp_new_i32();
>> +
>> + tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
>> + tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
>> + tcg_gen_or_tl(Rd, Rd, t1);
>> +
>> + tcg_temp_free_i32(t1);
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Sets a single Flag or bit in SREG.
>> + */
>> +static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
>> +{
>> + switch (a->bit) {
>> + case 0x00:
>> + tcg_gen_movi_tl(cpu_Cf, 0x01);
>> + break;
>> + case 0x01:
>> + tcg_gen_movi_tl(cpu_Zf, 0x01);
>> + break;
>> + case 0x02:
>> + tcg_gen_movi_tl(cpu_Nf, 0x01);
>> + break;
>> + case 0x03:
>> + tcg_gen_movi_tl(cpu_Vf, 0x01);
>> + break;
>> + case 0x04:
>> + tcg_gen_movi_tl(cpu_Sf, 0x01);
>> + break;
>> + case 0x05:
>> + tcg_gen_movi_tl(cpu_Hf, 0x01);
>> + break;
>> + case 0x06:
>> + tcg_gen_movi_tl(cpu_Tf, 0x01);
>> + break;
>> + case 0x07:
>> + tcg_gen_movi_tl(cpu_If, 0x01);
>> + break;
>> + }
>> +
>> + return true;
>> +}
>> +
>> +
>> +/*
>> + * Clears a single Flag in SREG.
>> + */
>> +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
>> +{
>> + switch (a->bit) {
>> + case 0x00:
>> + tcg_gen_movi_tl(cpu_Cf, 0x00);
>> + break;
>> + case 0x01:
>> + tcg_gen_movi_tl(cpu_Zf, 0x00);
>> + break;
>> + case 0x02:
>> + tcg_gen_movi_tl(cpu_Nf, 0x00);
>> + break;
>> + case 0x03:
>> + tcg_gen_movi_tl(cpu_Vf, 0x00);
>> + break;
>> + case 0x04:
>> + tcg_gen_movi_tl(cpu_Sf, 0x00);
>> + break;
>> + case 0x05:
>> + tcg_gen_movi_tl(cpu_Hf, 0x00);
>> + break;
>> + case 0x06:
>> + tcg_gen_movi_tl(cpu_Tf, 0x00);
>> + break;
>> + case 0x07:
>> + tcg_gen_movi_tl(cpu_If, 0x00);
>> + break;
>> + }
>> +
>> + return true;
>> +}
>> --
>> 2.17.2 (Apple Git-113)
>>
>>
--
Best Regards,
Michael Rolnik
my mistake. Thanks. I will split it.
On Thu, Dec 5, 2019 at 3:17 PM Michael Rolnik <mrolnik@gmail.com> wrote:
> I think they do follow the division in the docs.
>
> On Thu, Dec 5, 2019 at 2:28 PM Aleksandar Markovic <
> aleksandar.m.mail@gmail.com> wrote:
>
>>
>>
>> On Wednesday, November 27, 2019, Michael Rolnik <mrolnik@gmail.com>
>> wrote:
>>
>>> This includes:
>>> - LSR, ROR
>>> - ASR
>>> - SWAP
>>> - SBI, CBI
>>> - BST, BLD
>>> - BSET, BCLR
>>>
>>> Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
>>> ---
>>> target/avr/translate.c | 1123 ++++++++++++++++++++++++++++++++++++++++
>>> 1 file changed, 1123 insertions(+)
>>>
>>>
>> Hello, Michael
>>
>> I said I am on vacation, and truly I am, but, fir the next version if the
>> series, I would like to ask you to extract "data transfer" instruction (as
>> defined in avr docs, MOV LD ST etc) from this patch, and create a new patch
>> for them - so that the patches follow the division from docs.
>>
>> Yours,
>> Aleksandar
>>
>>
>>
>>
>>
>>> diff --git a/target/avr/translate.c b/target/avr/translate.c
>>> index 48a42c984a..dc6a1af2fc 100644
>>> --- a/target/avr/translate.c
>>> +++ b/target/avr/translate.c
>>> @@ -317,6 +317,15 @@ static void gen_goto_tb(DisasContext *ctx, int n,
>>> target_ulong dest)
>>> }
>>>
>>>
>>> +static void gen_rshift_ZNVSf(TCGv R)
>>> +{
>>> + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
>>> + tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
>>> + tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
>>> + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
>>> +}
>>> +
>>> +
>>> /*
>>> * Adds two registers without the C Flag and places the result in the
>>> * destination register Rd.
>>> @@ -1508,3 +1517,1117 @@ static bool trans_BRBS(DisasContext *ctx,
>>> arg_BRBS *a)
>>> return true;
>>> }
>>>
>>> +
>>> +/*
>>> + * This instruction makes a copy of one register into another. The
>>> source
>>> + * register Rr is left unchanged, while the destination register Rd is
>>> loaded
>>> + * with a copy of Rr.
>>> + */
>>> +static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv Rr = cpu_r[a->rr];
>>> +
>>> + tcg_gen_mov_tl(Rd, Rr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * This instruction makes a copy of one register pair into another
>>> register
>>> + * pair. The source register pair Rr+1:Rr is left unchanged, while the
>>> + * destination register pair Rd+1:Rd is loaded with a copy of Rr +
>>> 1:Rr. This
>>> + * instruction is not available in all devices. Refer to the device
>>> specific
>>> + * instruction set summary.
>>> + */
>>> +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
>>> +{
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
>>> + return true;
>>> + }
>>> +
>>> + TCGv RdL = cpu_r[a->rd];
>>> + TCGv RdH = cpu_r[a->rd + 1];
>>> + TCGv RrL = cpu_r[a->rr];
>>> + TCGv RrH = cpu_r[a->rr + 1];
>>> +
>>> + tcg_gen_mov_tl(RdH, RrH);
>>> + tcg_gen_mov_tl(RdL, RrL);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Loads an 8 bit constant directly to register 16 to 31.
>>> + */
>>> +static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + int imm = a->imm;
>>> +
>>> + tcg_gen_movi_tl(Rd, imm);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Loads one byte from the data space to a register. For parts with
>>> SRAM,
>>> + * the data space consists of the Register File, I/O memory and
>>> internal SRAM
>>> + * (and external SRAM if applicable). For parts without SRAM, the data
>>> space
>>> + * consists of the register file only. The EEPROM has a separate
>>> address space.
>>> + * A 16-bit address must be supplied. Memory access is limited to the
>>> current
>>> + * data segment of 64KB. The LDS instruction uses the RAMPD Register
>>> to access
>>> + * memory above 64KB. To access another data segment in devices with
>>> more than
>>> + * 64KB data space, the RAMPD in register in the I/O area has to be
>>> changed.
>>> + * This instruction is not available in all devices. Refer to the
>>> device
>>> + * specific instruction set summary.
>>> + */
>>> +static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = tcg_temp_new_i32();
>>> + TCGv H = cpu_rampD;
>>> + a->imm = next_word(ctx);
>>> +
>>> + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
>>> + tcg_gen_shli_tl(addr, addr, 16);
>>> + tcg_gen_ori_tl(addr, addr, a->imm);
>>> +
>>> + gen_data_load(ctx, Rd, addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Loads one byte indirect from the data space to a register. For parts
>>> + * with SRAM, the data space consists of the Register File, I/O memory
>>> and
>>> + * internal SRAM (and external SRAM if applicable). For parts without
>>> SRAM, the
>>> + * data space consists of the Register File only. In some parts the
>>> Flash
>>> + * Memory has been mapped to the data space and can be read using this
>>> command.
>>> + * The EEPROM has a separate address space. The data location is
>>> pointed to by
>>> + * the X (16 bits) Pointer Register in the Register File. Memory
>>> access is
>>> + * limited to the current data segment of 64KB. To access another data
>>> segment
>>> + * in devices with more than 64KB data space, the RAMPX in register in
>>> the I/O
>>> + * area has to be changed. The X-pointer Register can either be left
>>> unchanged
>>> + * by the operation, or it can be post-incremented or predecremented.
>>> These
>>> + * features are especially suited for accessing arrays, tables, and
>>> Stack
>>> + * Pointer usage of the X-pointer Register. Note that only the low
>>> byte of the
>>> + * X-pointer is updated in devices with no more than 256 bytes data
>>> space. For
>>> + * such devices, the high byte of the pointer is not used by this
>>> instruction
>>> + * and can be used for other purposes. The RAMPX Register in the I/O
>>> area is
>>> + * updated in parts with more than 64KB data space or more than 64KB
>>> Program
>>> + * memory, and the increment/decrement is added to the entire 24-bit
>>> address on
>>> + * such devices. Not all variants of this instruction is available in
>>> all
>>> + * devices. Refer to the device specific instruction set summary. In
>>> the
>>> + * Reduced Core tinyAVR the LD instruction can be used to achieve the
>>> same
>>> + * operation as LPM since the program memory is mapped to the data
>>> memory
>>> + * space.
>>> + */
>>> +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_xaddr();
>>> +
>>> + gen_data_load(ctx, Rd, addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_xaddr();
>>> +
>>> + gen_data_load(ctx, Rd, addr);
>>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> + gen_set_xaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_xaddr();
>>> +
>>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> + gen_data_load(ctx, Rd, addr);
>>> + gen_set_xaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rr];
>>> + TCGv addr = gen_get_xaddr();
>>> +
>>> + gen_data_store(ctx, Rd, addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rr];
>>> + TCGv addr = gen_get_xaddr();
>>> +
>>> + gen_data_store(ctx, Rd, addr);
>>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> + gen_set_xaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rr];
>>> + TCGv addr = gen_get_xaddr();
>>> +
>>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> + gen_data_store(ctx, Rd, addr);
>>> + gen_set_xaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Loads one byte indirect with or without displacement from the data
>>> space
>>> + * to a register. For parts with SRAM, the data space consists of the
>>> Register
>>> + * File, I/O memory and internal SRAM (and external SRAM if
>>> applicable). For
>>> + * parts without SRAM, the data space consists of the Register File
>>> only. In
>>> + * some parts the Flash Memory has been mapped to the data space and
>>> can be
>>> + * read using this command. The EEPROM has a separate address space.
>>> The data
>>> + * location is pointed to by the Y (16 bits) Pointer Register in the
>>> Register
>>> + * File. Memory access is limited to the current data segment of 64KB.
>>> To
>>> + * access another data segment in devices with more than 64KB data
>>> space, the
>>> + * RAMPY in register in the I/O area has to be changed. The Y-pointer
>>> Register
>>> + * can either be left unchanged by the operation, or it can be
>>> post-incremented
>>> + * or predecremented. These features are especially suited for
>>> accessing
>>> + * arrays, tables, and Stack Pointer usage of the Y-pointer Register.
>>> Note that
>>> + * only the low byte of the Y-pointer is updated in devices with no
>>> more than
>>> + * 256 bytes data space. For such devices, the high byte of the
>>> pointer is not
>>> + * used by this instruction and can be used for other purposes. The
>>> RAMPY
>>> + * Register in the I/O area is updated in parts with more than 64KB
>>> data space
>>> + * or more than 64KB Program memory, and the
>>> increment/decrement/displacement
>>> + * is added to the entire 24-bit address on such devices. Not all
>>> variants of
>>> + * this instruction is available in all devices. Refer to the device
>>> specific
>>> + * instruction set summary. In the Reduced Core tinyAVR the LD
>>> instruction can
>>> + * be used to achieve the same operation as LPM since the program
>>> memory is
>>> + * mapped to the data memory space.
>>> + */
>>> +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_yaddr();
>>> +
>>> + gen_data_load(ctx, Rd, addr);
>>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> + gen_set_yaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_yaddr();
>>> +
>>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> + gen_data_load(ctx, Rd, addr);
>>> + gen_set_yaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_yaddr();
>>> +
>>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> + gen_data_load(ctx, Rd, addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_yaddr();
>>> +
>>> + gen_data_store(ctx, Rd, addr);
>>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> + gen_set_yaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_yaddr();
>>> +
>>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> + gen_data_store(ctx, Rd, addr);
>>> + gen_set_yaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_yaddr();
>>> +
>>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> + gen_data_store(ctx, Rd, addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Loads one byte indirect with or without displacement from the data
>>> space
>>> + * to a register. For parts with SRAM, the data space consists of the
>>> Register
>>> + * File, I/O memory and internal SRAM (and external SRAM if
>>> applicable). For
>>> + * parts without SRAM, the data space consists of the Register File
>>> only. In
>>> + * some parts the Flash Memory has been mapped to the data space and
>>> can be
>>> + * read using this command. The EEPROM has a separate address space.
>>> The data
>>> + * location is pointed to by the Z (16 bits) Pointer Register in the
>>> Register
>>> + * File. Memory access is limited to the current data segment of 64KB.
>>> To
>>> + * access another data segment in devices with more than 64KB data
>>> space, the
>>> + * RAMPZ in register in the I/O area has to be changed. The Z-pointer
>>> Register
>>> + * can either be left unchanged by the operation, or it can be
>>> post-incremented
>>> + * or predecremented. These features are especially suited for Stack
>>> Pointer
>>> + * usage of the Z-pointer Register, however because the Z-pointer
>>> Register can
>>> + * be used for indirect subroutine calls, indirect jumps and table
>>> lookup, it
>>> + * is often more convenient to use the X or Y-pointer as a dedicated
>>> Stack
>>> + * Pointer. Note that only the low byte of the Z-pointer is updated in
>>> devices
>>> + * with no more than 256 bytes data space. For such devices, the high
>>> byte of
>>> + * the pointer is not used by this instruction and can be used for
>>> other
>>> + * purposes. The RAMPZ Register in the I/O area is updated in parts
>>> with more
>>> + * than 64KB data space or more than 64KB Program memory, and the
>>> + * increment/decrement/displacement is added to the entire 24-bit
>>> address on
>>> + * such devices. Not all variants of this instruction is available in
>>> all
>>> + * devices. Refer to the device specific instruction set summary. In
>>> the
>>> + * Reduced Core tinyAVR the LD instruction can be used to achieve the
>>> same
>>> + * operation as LPM since the program memory is mapped to the data
>>> memory
>>> + * space. For using the Z-pointer for table lookup in Program memory
>>> see the
>>> + * LPM and ELPM instructions.
>>> + */
>>> +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_zaddr();
>>> +
>>> + gen_data_load(ctx, Rd, addr);
>>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> + gen_set_zaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_zaddr();
>>> +
>>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> + gen_data_load(ctx, Rd, addr);
>>> +
>>> + gen_set_zaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_zaddr();
>>> +
>>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> + gen_data_load(ctx, Rd, addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_zaddr();
>>> +
>>> + gen_data_store(ctx, Rd, addr);
>>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> + gen_set_zaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_zaddr();
>>> +
>>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> + gen_data_store(ctx, Rd, addr);
>>> +
>>> + gen_set_zaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_zaddr();
>>> +
>>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> + gen_data_store(ctx, Rd, addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +
>>> +/*
>>> + * Stores one byte from a Register to the data space. For parts with
>>> SRAM,
>>> + * the data space consists of the Register File, I/O memory and
>>> internal SRAM
>>> + * (and external SRAM if applicable). For parts without SRAM, the data
>>> space
>>> + * consists of the Register File only. The EEPROM has a separate
>>> address space.
>>> + * A 16-bit address must be supplied. Memory access is limited to the
>>> current
>>> + * data segment of 64KB. The STS instruction uses the RAMPD Register
>>> to access
>>> + * memory above 64KB. To access another data segment in devices with
>>> more than
>>> + * 64KB data space, the RAMPD in register in the I/O area has to be
>>> changed.
>>> + * This instruction is not available in all devices. Refer to the
>>> device
>>> + * specific instruction set summary.
>>> + */
>>> +static bool trans_STS(DisasContext *ctx, arg_STS *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = tcg_temp_new_i32();
>>> + TCGv H = cpu_rampD;
>>> + a->imm = next_word(ctx);
>>> +
>>> + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
>>> + tcg_gen_shli_tl(addr, addr, 16);
>>> + tcg_gen_ori_tl(addr, addr, a->imm);
>>> +
>>> + gen_data_store(ctx, Rd, addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Loads one byte pointed to by the Z-register into the destination
>>> + * register Rd. This instruction features a 100% space effective
>>> constant
>>> + * initialization or constant data fetch. The Program memory is
>>> organized in
>>> + * 16-bit words while the Z-pointer is a byte address. Thus, the least
>>> + * significant bit of the Z-pointer selects either low byte (ZLSB = 0)
>>> or high
>>> + * byte (ZLSB = 1). This instruction can address the first 64KB (32K
>>> words) of
>>> + * Program memory. The Zpointer Register can either be left unchanged
>>> by the
>>> + * operation, or it can be incremented. The incrementation does not
>>> apply to
>>> + * the RAMPZ Register. Devices with Self-Programming capability can
>>> use the
>>> + * LPM instruction to read the Fuse and Lock bit values. Refer to the
>>> device
>>> + * documentation for a detailed description. The LPM instruction is
>>> not
>>> + * available in all devices. Refer to the device specific instruction
>>> set
>>> + * summary
>>> + */
>>> +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
>>> +{
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>>> + return true;
>>> + }
>>> +
>>> + TCGv Rd = cpu_r[0];
>>> + TCGv addr = tcg_temp_new_i32();
>>> + TCGv H = cpu_r[31];
>>> + TCGv L = cpu_r[30];
>>> +
>>> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>>> + tcg_gen_or_tl(addr, addr, L);
>>> +
>>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
>>> +{
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>>> + return true;
>>> + }
>>> +
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = tcg_temp_new_i32();
>>> + TCGv H = cpu_r[31];
>>> + TCGv L = cpu_r[30];
>>> +
>>> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>>> + tcg_gen_or_tl(addr, addr, L);
>>> +
>>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
>>> +{
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
>>> + return true;
>>> + }
>>> +
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = tcg_temp_new_i32();
>>> + TCGv H = cpu_r[31];
>>> + TCGv L = cpu_r[30];
>>> +
>>> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>>> + tcg_gen_or_tl(addr, addr, L);
>>> +
>>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> + tcg_gen_andi_tl(L, addr, 0xff);
>>> +
>>> + tcg_gen_shri_tl(addr, addr, 8);
>>> + tcg_gen_andi_tl(H, addr, 0xff);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Loads one byte pointed to by the Z-register and the RAMPZ Register
>>> in
>>> + * the I/O space, and places this byte in the destination register Rd.
>>> This
>>> + * instruction features a 100% space effective constant initialization
>>> or
>>> + * constant data fetch. The Program memory is organized in 16-bit
>>> words while
>>> + * the Z-pointer is a byte address. Thus, the least significant bit of
>>> the
>>> + * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB =
>>> 1). This
>>> + * instruction can address the entire Program memory space. The
>>> Z-pointer
>>> + * Register can either be left unchanged by the operation, or it can be
>>> + * incremented. The incrementation applies to the entire 24-bit
>>> concatenation
>>> + * of the RAMPZ and Z-pointer Registers. Devices with Self-Programming
>>> + * capability can use the ELPM instruction to read the Fuse and Lock
>>> bit value.
>>> + * Refer to the device documentation for a detailed description. This
>>> + * instruction is not available in all devices. Refer to the device
>>> specific
>>> + * instruction set summary.
>>> + */
>>> +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
>>> +{
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>>> + return true;
>>> + }
>>> +
>>> + TCGv Rd = cpu_r[0];
>>> + TCGv addr = gen_get_zaddr();
>>> +
>>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
>>> +{
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>>> + return true;
>>> + }
>>> +
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_zaddr();
>>> +
>>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
>>> +{
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
>>> + return true;
>>> + }
>>> +
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_zaddr();
>>> +
>>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> + gen_set_zaddr(addr);
>>> +
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * SPM can be used to erase a page in the Program memory, to write a
>>> page
>>> + * in the Program memory (that is already erased), and to set Boot
>>> Loader Lock
>>> + * bits. In some devices, the Program memory can be written one word
>>> at a time,
>>> + * in other devices an entire page can be programmed simultaneously
>>> after first
>>> + * filling a temporary page buffer. In all cases, the Program memory
>>> must be
>>> + * erased one page at a time. When erasing the Program memory, the
>>> RAMPZ and
>>> + * Z-register are used as page address. When writing the Program
>>> memory, the
>>> + * RAMPZ and Z-register are used as page or word address, and the R1:R0
>>> + * register pair is used as data(1). When setting the Boot Loader Lock
>>> bits,
>>> + * the R1:R0 register pair is used as data. Refer to the device
>>> documentation
>>> + * for detailed description of SPM usage. This instruction can address
>>> the
>>> + * entire Program memory. The SPM instruction is not available in all
>>> devices.
>>> + * Refer to the device specific instruction set summary. Note: 1. R1
>>> + * determines the instruction high byte, and R0 determines the
>>> instruction low
>>> + * byte.
>>> + */
>>> +static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
>>> +{
>>> + /* TODO */
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
>>> + return true;
>>> + }
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
>>> +{
>>> + /* TODO */
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
>>> + return true;
>>> + }
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Loads data from the I/O Space (Ports, Timers, Configuration
>>> Registers,
>>> + * etc.) into register Rd in the Register File.
>>> + */
>>> +static bool trans_IN(DisasContext *ctx, arg_IN *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv port = tcg_const_i32(a->imm);
>>> +
>>> + gen_helper_inb(Rd, cpu_env, port);
>>> +
>>> + tcg_temp_free_i32(port);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Stores data from register Rr in the Register File to I/O Space
>>> (Ports,
>>> + * Timers, Configuration Registers, etc.).
>>> + */
>>> +static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv port = tcg_const_i32(a->imm);
>>> +
>>> + gen_helper_outb(cpu_env, port, Rd);
>>> +
>>> + tcg_temp_free_i32(port);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * This instruction stores the contents of register Rr on the STACK.
>>> The
>>> + * Stack Pointer is post-decremented by 1 after the PUSH. This
>>> instruction is
>>> + * not available in all devices. Refer to the device specific
>>> instruction set
>>> + * summary.
>>> + */
>>> +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> +
>>> + gen_data_store(ctx, Rd, cpu_sp);
>>> + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * This instruction loads register Rd with a byte from the STACK. The
>>> Stack
>>> + * Pointer is pre-incremented by 1 before the POP. This instruction
>>> is not
>>> + * available in all devices. Refer to the device specific instruction
>>> set
>>> + * summary.
>>> + */
>>> +static bool trans_POP(DisasContext *ctx, arg_POP *a)
>>> +{
>>> + /*
>>> + * Using a temp to work around some strange behaviour:
>>> + * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
>>> + * gen_data_load(ctx, Rd, cpu_sp);
>>> + * seems to cause the add to happen twice.
>>> + * This doesn't happen if either the add or the load is removed.
>>> + */
>>> + TCGv t1 = tcg_temp_new_i32();
>>> + TCGv Rd = cpu_r[a->rd];
>>> +
>>> + tcg_gen_addi_tl(t1, cpu_sp, 1);
>>> + gen_data_load(ctx, Rd, t1);
>>> + tcg_gen_mov_tl(cpu_sp, t1);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Exchanges one byte indirect between register and data space. The
>>> data
>>> + * location is pointed to by the Z (16 bits) Pointer Register in the
>>> Register
>>> + * File. Memory access is limited to the current data segment of 64KB.
>>> To
>>> + * access another data segment in devices with more than 64KB data
>>> space, the
>>> + * RAMPZ in register in the I/O area has to be changed. The Z-pointer
>>> Register
>>> + * is left unchanged by the operation. This instruction is especially
>>> suited
>>> + * for writing/reading status bits stored in SRAM.
>>> + */
>>> +static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
>>> +{
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> + return true;
>>> + }
>>> +
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv t0 = tcg_temp_new_i32();
>>> + TCGv addr = gen_get_zaddr();
>>> +
>>> + gen_data_load(ctx, t0, addr);
>>> + gen_data_store(ctx, Rd, addr);
>>> + tcg_gen_mov_tl(Rd, t0);
>>> +
>>> + tcg_temp_free_i32(t0);
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Load one byte indirect from data space to register and set bits in
>>> data
>>> + * space specified by the register. The instruction can only be used
>>> towards
>>> + * internal SRAM. The data location is pointed to by the Z (16 bits)
>>> Pointer
>>> + * Register in the Register File. Memory access is limited to the
>>> current data
>>> + * segment of 64KB. To access another data segment in devices with
>>> more than
>>> + * 64KB data space, the RAMPZ in register in the I/O area has to be
>>> changed.
>>> + * The Z-pointer Register is left unchanged by the operation. This
>>> instruction
>>> + * is especially suited for setting status bits stored in SRAM.
>>> + */
>>> +static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
>>> +{
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> + return true;
>>> + }
>>> +
>>> + TCGv Rr = cpu_r[a->rd];
>>> + TCGv addr = gen_get_zaddr();
>>> + TCGv t0 = tcg_temp_new_i32();
>>> + TCGv t1 = tcg_temp_new_i32();
>>> +
>>> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>>> + tcg_gen_or_tl(t1, t0, Rr);
>>> +
>>> + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>>> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>>> +
>>> + tcg_temp_free_i32(t1);
>>> + tcg_temp_free_i32(t0);
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Load one byte indirect from data space to register and stores and
>>> clear
>>> + * the bits in data space specified by the register. The instruction
>>> can
>>> + * only be used towards internal SRAM. The data location is pointed
>>> to by
>>> + * the Z (16 bits) Pointer Register in the Register File. Memory
>>> access is
>>> + * limited to the current data segment of 64KB. To access another data
>>> + * segment in devices with more than 64KB data space, the RAMPZ in
>>> register
>>> + * in the I/O area has to be changed. The Z-pointer Register is left
>>> + * unchanged by the operation. This instruction is especially suited
>>> for
>>> + * clearing status bits stored in SRAM.
>>> + */
>>> +static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
>>> +{
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> + return true;
>>> + }
>>> +
>>> + TCGv Rr = cpu_r[a->rd];
>>> + TCGv addr = gen_get_zaddr();
>>> + TCGv t0 = tcg_temp_new_i32();
>>> + TCGv t1 = tcg_temp_new_i32();
>>> +
>>> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>>> + /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
>>> + tcg_gen_andc_tl(t1, t0, Rr);
>>> +
>>> + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>>> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>>> +
>>> + tcg_temp_free_i32(t1);
>>> + tcg_temp_free_i32(t0);
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Load one byte indirect from data space to register and toggles bits
>>> in
>>> + * the data space specified by the register. The instruction can only
>>> be used
>>> + * towards SRAM. The data location is pointed to by the Z (16 bits)
>>> Pointer
>>> + * Register in the Register File. Memory access is limited to the
>>> current data
>>> + * segment of 64KB. To access another data segment in devices with
>>> more than
>>> + * 64KB data space, the RAMPZ in register in the I/O area has to be
>>> changed.
>>> + * The Z-pointer Register is left unchanged by the operation. This
>>> instruction
>>> + * is especially suited for changing status bits stored in SRAM.
>>> + */
>>> +static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
>>> +{
>>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> + return true;
>>> + }
>>> +
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv addr = gen_get_zaddr();
>>> + TCGv t0 = tcg_temp_new_i32();
>>> + TCGv t1 = tcg_temp_new_i32();
>>> +
>>> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>>> + tcg_gen_xor_tl(t1, t0, Rd);
>>> +
>>> + tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
>>> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>>> +
>>> + tcg_temp_free_i32(t1);
>>> + tcg_temp_free_i32(t0);
>>> + tcg_temp_free_i32(addr);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit
>>> 0 is
>>> + * loaded into the C Flag of the SREG. This operation effectively
>>> divides an
>>> + * unsigned value by two. The C Flag can be used to round the result.
>>> + */
>>> +static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> +
>>> + tcg_gen_andi_tl(cpu_Cf, Rd, 1);
>>> +
>>> + tcg_gen_shri_tl(Rd, Rd, 1);
>>> +
>>> + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
>>> + tcg_gen_movi_tl(cpu_Nf, 0);
>>> + tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
>>> + tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Shifts all bits in Rd one place to the right. The C Flag is shifted
>>> into
>>> + * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation,
>>> combined
>>> + * with ASR, effectively divides multi-byte signed values by two.
>>> Combined with
>>> + * LSR it effectively divides multi-byte unsigned values by two. The
>>> Carry Flag
>>> + * can be used to round the result.
>>> + */
>>> +static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv t0 = tcg_temp_new_i32();
>>> +
>>> + tcg_gen_shli_tl(t0, cpu_Cf, 7);
>>> + tcg_gen_andi_tl(cpu_Cf, Rd, 1);
>>> + tcg_gen_shri_tl(Rd, Rd, 1);
>>> + tcg_gen_or_tl(Rd, Rd, t0);
>>> +
>>> + gen_rshift_ZNVSf(Rd);
>>> +
>>> + tcg_temp_free_i32(t0);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Shifts all bits in Rd one place to the right. Bit 7 is held
>>> constant. Bit 0
>>> + * is loaded into the C Flag of the SREG. This operation effectively
>>> divides a
>>> + * signed value by two without changing its sign. The Carry Flag can
>>> be used to
>>> + * round the result.
>>> + */
>>> +static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv t0 = tcg_temp_new_i32();
>>> +
>>> + /* Cf */
>>> + tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
>>> +
>>> + /* op */
>>> + tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
>>> + tcg_gen_shri_tl(Rd, Rd, 1);
>>> + tcg_gen_or_tl(Rd, Rd, t0);
>>> +
>>> + gen_rshift_ZNVSf(Rd);
>>> +
>>> + tcg_temp_free_i32(t0);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Swaps high and low nibbles in a register.
>>> + */
>>> +static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv t0 = tcg_temp_new_i32();
>>> + TCGv t1 = tcg_temp_new_i32();
>>> +
>>> + tcg_gen_andi_tl(t0, Rd, 0x0f);
>>> + tcg_gen_shli_tl(t0, t0, 4);
>>> + tcg_gen_andi_tl(t1, Rd, 0xf0);
>>> + tcg_gen_shri_tl(t1, t1, 4);
>>> + tcg_gen_or_tl(Rd, t0, t1);
>>> +
>>> + tcg_temp_free_i32(t1);
>>> + tcg_temp_free_i32(t0);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Sets a specified bit in an I/O Register. This instruction operates
>>> on
>>> + * the lower 32 I/O Registers -- addresses 0-31.
>>> + */
>>> +static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
>>> +{
>>> + TCGv data = tcg_temp_new_i32();
>>> + TCGv port = tcg_const_i32(a->reg);
>>> +
>>> + gen_helper_inb(data, cpu_env, port);
>>> + tcg_gen_ori_tl(data, data, 1 << a->bit);
>>> + gen_helper_outb(cpu_env, port, data);
>>> +
>>> + tcg_temp_free_i32(port);
>>> + tcg_temp_free_i32(data);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Clears a specified bit in an I/O Register. This instruction
>>> operates on
>>> + * the lower 32 I/O Registers -- addresses 0-31.
>>> + */
>>> +static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
>>> +{
>>> + TCGv data = tcg_temp_new_i32();
>>> + TCGv port = tcg_const_i32(a->reg);
>>> +
>>> + gen_helper_inb(data, cpu_env, port);
>>> + tcg_gen_andi_tl(data, data, ~(1 << a->bit));
>>> + gen_helper_outb(cpu_env, port, data);
>>> +
>>> + tcg_temp_free_i32(data);
>>> + tcg_temp_free_i32(port);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Stores bit b from Rd to the T Flag in SREG (Status Register).
>>> + */
>>> +static bool trans_BST(DisasContext *ctx, arg_BST *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> +
>>> + tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
>>> + tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Copies the T Flag in the SREG (Status Register) to bit b in
>>> register Rd.
>>> + */
>>> +static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
>>> +{
>>> + TCGv Rd = cpu_r[a->rd];
>>> + TCGv t1 = tcg_temp_new_i32();
>>> +
>>> + tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
>>> + tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
>>> + tcg_gen_or_tl(Rd, Rd, t1);
>>> +
>>> + tcg_temp_free_i32(t1);
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Sets a single Flag or bit in SREG.
>>> + */
>>> +static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
>>> +{
>>> + switch (a->bit) {
>>> + case 0x00:
>>> + tcg_gen_movi_tl(cpu_Cf, 0x01);
>>> + break;
>>> + case 0x01:
>>> + tcg_gen_movi_tl(cpu_Zf, 0x01);
>>> + break;
>>> + case 0x02:
>>> + tcg_gen_movi_tl(cpu_Nf, 0x01);
>>> + break;
>>> + case 0x03:
>>> + tcg_gen_movi_tl(cpu_Vf, 0x01);
>>> + break;
>>> + case 0x04:
>>> + tcg_gen_movi_tl(cpu_Sf, 0x01);
>>> + break;
>>> + case 0x05:
>>> + tcg_gen_movi_tl(cpu_Hf, 0x01);
>>> + break;
>>> + case 0x06:
>>> + tcg_gen_movi_tl(cpu_Tf, 0x01);
>>> + break;
>>> + case 0x07:
>>> + tcg_gen_movi_tl(cpu_If, 0x01);
>>> + break;
>>> + }
>>> +
>>> + return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Clears a single Flag in SREG.
>>> + */
>>> +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
>>> +{
>>> + switch (a->bit) {
>>> + case 0x00:
>>> + tcg_gen_movi_tl(cpu_Cf, 0x00);
>>> + break;
>>> + case 0x01:
>>> + tcg_gen_movi_tl(cpu_Zf, 0x00);
>>> + break;
>>> + case 0x02:
>>> + tcg_gen_movi_tl(cpu_Nf, 0x00);
>>> + break;
>>> + case 0x03:
>>> + tcg_gen_movi_tl(cpu_Vf, 0x00);
>>> + break;
>>> + case 0x04:
>>> + tcg_gen_movi_tl(cpu_Sf, 0x00);
>>> + break;
>>> + case 0x05:
>>> + tcg_gen_movi_tl(cpu_Hf, 0x00);
>>> + break;
>>> + case 0x06:
>>> + tcg_gen_movi_tl(cpu_Tf, 0x00);
>>> + break;
>>> + case 0x07:
>>> + tcg_gen_movi_tl(cpu_If, 0x00);
>>> + break;
>>> + }
>>> +
>>> + return true;
>>> +}
>>> --
>>> 2.17.2 (Apple Git-113)
>>>
>>>
>
> --
> Best Regards,
> Michael Rolnik
>
--
Best Regards,
Michael Rolnik
© 2016 - 2026 Red Hat, Inc.