From nobody Thu Nov 14 16:37:06 2024 Received: from smtp.kernel.org (aws-us-west-2-korg-mail-1.web.codeaurora.org [10.30.226.201]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by smtp.subspace.kernel.org (Postfix) with ESMTPS id E91BB217906; Fri, 4 Oct 2024 15:43:32 +0000 (UTC) Authentication-Results: smtp.subspace.kernel.org; arc=none smtp.client-ip=10.30.226.201 ARC-Seal: i=1; a=rsa-sha256; d=subspace.kernel.org; s=arc-20240116; t=1728056613; cv=none; b=VVRjp10DLMF9jbnV+YcFQIpghKppqhNrMDOK5NXlkM1hkJ9b4SsyXqJ18B5ILamkFOurQL4kH4gbXx6ufZoVBCkxpHJszsk4H5jG+fJtMW+XkuBIcE+6U0DQPcGADDBY+1IrxCFA1hs3G94TiYh+fmT6CRSRFNMYqMiAJSw8ml0= ARC-Message-Signature: i=1; a=rsa-sha256; d=subspace.kernel.org; s=arc-20240116; t=1728056613; c=relaxed/simple; bh=urUND/M4698IVjZumaKDfSVmB/eKfMiMjzbdlOGJcEY=; h=From:To:Cc:Subject:Date:Message-ID:In-Reply-To:References: MIME-Version; b=E0RmKjTmYEUJ2QBjShORvSb5qmf8VWVy6u64nFMMukYInA/lGHqNpTKO0QrPU+2mNCEb08gFjfh9gzqnkQkkfozBt6DKF/D6N+/X7QdYJFTtMM5q2wsdgKNsagB3Odxuet9zYS7vHZGCxSpz6XxuxuLHavgiQEkmRGWzdCLe5fw= ARC-Authentication-Results: i=1; smtp.subspace.kernel.org; dkim=pass (2048-bit key) header.d=kernel.org header.i=@kernel.org header.b=UBhbEufK; arc=none smtp.client-ip=10.30.226.201 Authentication-Results: smtp.subspace.kernel.org; dkim=pass (2048-bit key) header.d=kernel.org header.i=@kernel.org header.b="UBhbEufK" Received: by smtp.kernel.org (Postfix) with ESMTPSA id 84324C4CED1; Fri, 4 Oct 2024 15:43:27 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=kernel.org; s=k20201202; t=1728056612; bh=urUND/M4698IVjZumaKDfSVmB/eKfMiMjzbdlOGJcEY=; h=From:To:Cc:Subject:Date:In-Reply-To:References:From; b=UBhbEufKcxuCRY00KyIbVslslxEMIsPk9WUsIs783OrEc0mZ18t20DCCioLwVd1CR 1UfTUeTTIUP9ShwsQ1d0sNBf/KCN+Rpnp+XQO33XJXDfKl1p+xscG4TmrESRWPDaOs JeWwYHnhGA5YhAQq20eXafHKYRzFyPBANORhWwpaT3MZvyf+6k7Mmj+PC0+8d/9vot x3lNwP0/1k2vNG1CKBomy3RqW7liDAYigkC1beVZ+EqPRy6RbMqFgldSl0q7A5djNa yilRx8s7MuFSciJUyH/m/yxjvMfjwN0sfLHB9gaPHgNBOTuL08qmT6VFlccK3Bd8Ot MtvXCVnihQyxQ== From: Danilo Krummrich To: ojeda@kernel.org, alex.gaynor@gmail.com, wedsonaf@gmail.com, boqun.feng@gmail.com, gary@garyguo.net, bjorn3_gh@protonmail.com, benno.lossin@proton.me, a.hindborg@samsung.com, aliceryhl@google.com, akpm@linux-foundation.org Cc: daniel.almeida@collabora.com, faith.ekstrand@collabora.com, boris.brezillon@collabora.com, lina@asahilina.net, mcanal@igalia.com, zhiw@nvidia.com, cjia@nvidia.com, jhubbard@nvidia.com, airlied@redhat.com, ajanulgu@redhat.com, lyude@redhat.com, linux-kernel@vger.kernel.org, rust-for-linux@vger.kernel.org, linux-mm@kvack.org, Danilo Krummrich Subject: [PATCH v9 16/29] rust: alloc: implement kernel `Vec` type Date: Fri, 4 Oct 2024 17:41:20 +0200 Message-ID: <20241004154149.93856-17-dakr@kernel.org> X-Mailer: git-send-email 2.46.1 In-Reply-To: <20241004154149.93856-1-dakr@kernel.org> References: <20241004154149.93856-1-dakr@kernel.org> Precedence: bulk X-Mailing-List: linux-kernel@vger.kernel.org List-Id: List-Subscribe: List-Unsubscribe: MIME-Version: 1.0 Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset="utf-8" `Vec` provides a contiguous growable array type with contents allocated with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`). In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers the kernel's GFP flags for all appropriate functions, always reports allocation failures through `Result<_, AllocError>` and remains independent from unstable features. Reviewed-by: Benno Lossin Reviewed-by: Gary Guo Signed-off-by: Danilo Krummrich --- rust/kernel/alloc.rs | 6 + rust/kernel/alloc/kvec.rs | 650 ++++++++++++++++++++++++++++++++++++++ rust/kernel/lib.rs | 1 + rust/kernel/prelude.rs | 2 +- 4 files changed, 658 insertions(+), 1 deletion(-) create mode 100644 rust/kernel/alloc/kvec.rs diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs index bf143a71d53d..961070daf6db 100644 --- a/rust/kernel/alloc.rs +++ b/rust/kernel/alloc.rs @@ -5,6 +5,7 @@ #[cfg(not(any(test, testlib)))] pub mod allocator; pub mod kbox; +pub mod kvec; pub mod layout; pub mod vec_ext; =20 @@ -19,6 +20,11 @@ pub use self::kbox::KVBox; pub use self::kbox::VBox; =20 +pub use self::kvec::KVVec; +pub use self::kvec::KVec; +pub use self::kvec::VVec; +pub use self::kvec::Vec; + /// Indicates an allocation error. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct AllocError; diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs new file mode 100644 index 000000000000..d41353b7653d --- /dev/null +++ b/rust/kernel/alloc/kvec.rs @@ -0,0 +1,650 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Implementation of [`Vec`]. + +use super::{ + allocator::{KVmalloc, Kmalloc, Vmalloc}, + layout::ArrayLayout, + AllocError, Allocator, Box, Flags, +}; +use core::{ + fmt, + marker::PhantomData, + mem::{ManuallyDrop, MaybeUninit}, + ops::Deref, + ops::DerefMut, + ops::Index, + ops::IndexMut, + ptr, + ptr::NonNull, + slice, + slice::SliceIndex, +}; + +/// Create a [`KVec`] containing the arguments. +/// +/// New memory is allocated with `GFP_KERNEL`. +/// +/// # Examples +/// +/// ``` +/// let mut v =3D kernel::kvec![]; +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(v, [1]); +/// +/// let mut v =3D kernel::kvec![1; 3]?; +/// v.push(4, GFP_KERNEL)?; +/// assert_eq!(v, [1, 1, 1, 4]); +/// +/// let mut v =3D kernel::kvec![1, 2, 3]?; +/// v.push(4, GFP_KERNEL)?; +/// assert_eq!(v, [1, 2, 3, 4]); +/// +/// # Ok::<(), Error>(()) +/// ``` +#[macro_export] +macro_rules! kvec { + () =3D> ( + $crate::alloc::KVec::new() + ); + ($elem:expr; $n:expr) =3D> ( + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) + ); + ($($x:expr),+ $(,)?) =3D> ( + match $crate::alloc::KBox::new_uninit(GFP_KERNEL) { + Ok(b) =3D> Ok($crate::alloc::KVec::from($crate::alloc::KBox::w= rite(b, [$($x),+]))), + Err(e) =3D> Err(e), + } + ); +} + +/// The kernel's [`Vec`] type. +/// +/// A contiguous growable array type with contents allocated with the kern= el's allocators (e.g. +/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec`. +/// +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` = for its allocation. For +/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`K= VVec`] exist. +/// +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::`= ; no memory is allocated. +/// +/// Generally, [`Vec`] consists of a pointer that represents the vector's = backing buffer, the +/// capacity of the vector (the number of elements that currently fit into= the vector), it's length +/// (the number of elements that are currently stored in the vector) and t= he `Allocator` type used +/// to allocate (and free) the backing buffer. +/// +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's pre= viously named raw parts +/// and manually modified. +/// +/// [`Vec`]'s backing buffer gets, if required, automatically increased (r= e-allocated) when elements +/// are added to the vector. +/// +/// # Invariants +/// +/// - `self.ptr` is always properly aligned and either points to memory al= located with `A` or, for +/// zero-sized types, is a dangling, well aligned pointer. +/// +/// - `self.len` always represents the exact number of elements stored in = the vector. +/// +/// - `self.layout` represents the absolute number of elements that can be= stored within the vector +/// without re-allocation. For ZSTs `self.layout`'s capacity is zero. Ho= wever, it is legal for the +/// backing buffer to be larger than `layout`. +/// +/// - The `Allocator` type `A` of the vector is the exact same `Allocator`= type the backing buffer +/// was allocated with (and must be freed with). +pub struct Vec { + ptr: NonNull, + /// Represents the actual buffer size as `cap` times `size_of::` by= tes. + /// + /// Note: This isn't quite the same as `Self::capacity`, which in cont= rast returns the number of + /// elements we can still store without reallocating. + layout: ArrayLayout, + len: usize, + _p: PhantomData, +} + +/// Type alias for [`Vec`] with a [`Kmalloc`] allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v =3D KVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type KVec =3D Vec; + +/// Type alias for [`Vec`] with a [`Vmalloc`] allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v =3D VVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type VVec =3D Vec; + +/// Type alias for [`Vec`] with a [`KVmalloc`] allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v =3D KVVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type KVVec =3D Vec; + +// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its element= s. +unsafe impl Send for Vec +where + T: Send, + A: Allocator, +{ +} + +// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its element= s. +unsafe impl Sync for Vec +where + T: Sync, + A: Allocator, +{ +} + +impl Vec +where + A: Allocator, +{ + #[inline] + const fn is_zst() -> bool { + core::mem::size_of::() =3D=3D 0 + } + + /// Returns the number of elements that can be stored within the vecto= r without allocating + /// additional memory. + pub fn capacity(&self) -> usize { + if const { Self::is_zst() } { + usize::MAX + } else { + self.layout.len() + } + } + + /// Returns the number of elements stored within the vector. + #[inline] + pub fn len(&self) -> usize { + self.len + } + + /// Forcefully sets `self.len` to `new_len`. + /// + /// # Safety + /// + /// - `new_len` must be less than or equal to [`Self::capacity`]. + /// - If `new_len` is greater than `self.len`, all elements within the= interval + /// [`self.len`,`new_len`) must be initialized. + #[inline] + pub unsafe fn set_len(&mut self, new_len: usize) { + debug_assert!(new_len <=3D self.capacity()); + self.len =3D new_len; + } + + /// Returns a slice of the entire vector. + #[inline] + pub fn as_slice(&self) -> &[T] { + self + } + + /// Returns a mutable slice of the entire vector. + #[inline] + pub fn as_mut_slice(&mut self) -> &mut [T] { + self + } + + /// Returns a mutable raw pointer to the vector's backing buffer, or, = if `T` is a ZST, a + /// dangling raw pointer. + #[inline] + pub fn as_mut_ptr(&mut self) -> *mut T { + self.ptr.as_ptr() + } + + /// Returns a raw pointer to the vector's backing buffer, or, if `T` i= s a ZST, a dangling raw + /// pointer. + #[inline] + pub fn as_ptr(&self) -> *const T { + self.ptr.as_ptr() + } + + /// Returns `true` if the vector contains no elements, `false` otherwi= se. + /// + /// # Examples + /// + /// ``` + /// let mut v =3D KVec::new(); + /// assert!(v.is_empty()); + /// + /// v.push(1, GFP_KERNEL); + /// assert!(!v.is_empty()); + /// ``` + #[inline] + pub fn is_empty(&self) -> bool { + self.len() =3D=3D 0 + } + + /// Creates a new, empty Vec. + /// + /// This method does not allocate by itself. + #[inline] + pub const fn new() -> Self { + // INVARIANT: Since this is a new, empty `Vec` with no backing mem= ory yet, + // - `ptr` is a properly aligned dangling pointer for type `T`, + // - `layout` is an empty `ArrayLayout` (zero capacity) + // - `len` is zero, since no elements can be or have been stored, + // - `A` is always valid. + Self { + ptr: NonNull::dangling(), + layout: ArrayLayout::empty(), + len: 0, + _p: PhantomData::, + } + } + + /// Returns a slice of `MaybeUninit` for the remaining spare capaci= ty of the vector. + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit] { + // SAFETY: + // - `self.len` is smaller than `self.capacity` and hence, the res= ulting pointer is + // guaranteed to be part of the same allocated object. + // - `self.len` can not overflow `isize`. + let ptr =3D unsafe { self.as_mut_ptr().add(self.len) } as *mut May= beUninit; + + // SAFETY: The memory between `self.len` and `self.capacity` is gu= aranteed to be allocated + // and valid, but uninitialized. + unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len= ) } + } + + /// Appends an element to the back of the [`Vec`] instance. + /// + /// # Examples + /// + /// ``` + /// let mut v =3D KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// assert_eq!(&v, &[1]); + /// + /// v.push(2, GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 2]); + /// # Ok::<(), Error>(()) + /// ``` + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { + self.reserve(1, flags)?; + + // SAFETY: + // - `self.len` is smaller than `self.capacity` and hence, the res= ulting pointer is + // guaranteed to be part of the same allocated object. + // - `self.len` can not overflow `isize`. + let ptr =3D unsafe { self.as_mut_ptr().add(self.len) }; + + // SAFETY: + // - `ptr` is properly aligned and valid for writes. + unsafe { core::ptr::write(ptr, v) }; + + // SAFETY: We just initialised the first spare entry, so it is saf= e to increase the length + // by 1. We also know that the new length is <=3D capacity because= of the previous call to + // `reserve` above. + unsafe { self.set_len(self.len() + 1) }; + Ok(()) + } + + /// Creates a new [`Vec`] instance with at least the given capacity. + /// + /// # Examples + /// + /// ``` + /// let v =3D KVec::::with_capacity(20, GFP_KERNEL)?; + /// + /// assert!(v.capacity() >=3D 20); + /// # Ok::<(), Error>(()) + /// ``` + pub fn with_capacity(capacity: usize, flags: Flags) -> Result { + let mut v =3D Vec::new(); + + v.reserve(capacity, flags)?; + + Ok(v) + } + + /// Creates a Vec from a pointer, a length and a capacity using = the allocator `A`. + /// + /// # Examples + /// + /// ``` + /// let mut v =3D kernel::kvec![1, 2, 3]?; + /// v.reserve(1, GFP_KERNEL)?; + /// + /// let (mut ptr, mut len, cap) =3D v.into_raw_parts(); + /// + /// // SAFETY: We've just reserved memory for another element. + /// unsafe { ptr.add(len).write(4) }; + /// len +=3D 1; + /// + /// // SAFETY: We only wrote an additional element at the end of the `= KVec`'s buffer and + /// // correspondingly increased the length of the `KVec` by one. Othe= rwise, we construct it + /// // from the exact same raw parts. + /// let v =3D unsafe { KVec::from_raw_parts(ptr, len, cap) }; + /// + /// assert_eq!(v, [1, 2, 3, 4]); + /// + /// # Ok::<(), Error>(()) + /// ``` + /// + /// # Safety + /// + /// If `T` is a ZST: + /// + /// - `ptr` must be a dangling, well aligned pointer. + /// + /// Otherwise: + /// + /// - `ptr` must have been allocated with the allocator `A`. + /// - `ptr` must satisfy or exceed the alignment requirements of `T`. + /// - `ptr` must point to memory with a size of at least `size_of::= () * capacity`. + /// bytes. + /// - The allocated size in bytes must not be larger than `isize::MAX`. + /// - `length` must be less than or equal to `capacity`. + /// - The first `length` elements must be initialized values of type `= T`. + /// + /// It is also valid to create an empty `Vec` passing a dangling point= er for `ptr` and zero for + /// `cap` and `len`. + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usi= ze) -> Self { + let layout =3D if Self::is_zst() { + ArrayLayout::empty() + } else { + // SAFETY: By the safety requirements of this function, `capac= ity * size_of::()` is + // smaller than `isize::MAX`. + unsafe { ArrayLayout::new_unchecked(capacity) } + }; + + // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other= type invariants are + // covered by the safety requirements of this function. + Self { + // SAFETY: By the safety requirements, `ptr` is either danglin= g or pointing to a valid + // memory allocation, allocated with `A`. + ptr: unsafe { NonNull::new_unchecked(ptr) }, + layout, + len: length, + _p: PhantomData::, + } + } + + /// Consumes the `Vec` and returns its raw components `pointer`,= `length` and `capacity`. + /// + /// This will not run the destructor of the contained elements and for= non-ZSTs the allocation + /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recov= er the [`Vec`], drop the + /// elements and free the allocation, if any. + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { + let mut me =3D ManuallyDrop::new(self); + let len =3D me.len(); + let capacity =3D me.capacity(); + let ptr =3D me.as_mut_ptr(); + (ptr, len, capacity) + } + + /// Ensures that the capacity exceeds the length by at least `addition= al` + /// elements. + /// + /// # Examples + /// + /// ``` + /// let mut v =3D KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// + /// v.reserve(10, GFP_KERNEL)?; + /// let cap =3D v.capacity(); + /// assert!(cap >=3D 10); + /// + /// v.reserve(10, GFP_KERNEL)?; + /// let new_cap =3D v.capacity(); + /// assert_eq!(new_cap, cap); + /// + /// # Ok::<(), Error>(()) + /// ``` + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(= ), AllocError> { + let len =3D self.len(); + let cap =3D self.capacity(); + + if cap - len >=3D additional { + return Ok(()); + } + + if Self::is_zst() { + // The capacity is already `usize::MAX` for ZSTs, we can't go = higher. + return Err(AllocError); + } + + // We know that `cap <=3D isize::MAX` because of the type invarian= ts of `Self`. So the + // multiplication by two won't overflow. + let new_cap =3D core::cmp::max(cap * 2, len.checked_add(additional= ).ok_or(AllocError)?); + let layout =3D ArrayLayout::new(new_cap).map_err(|_| AllocError)?; + + // SAFETY: + // - `ptr` is valid because it's either `None` or comes from a pre= vious call to + // `A::realloc`. + // - `self.layout` matches the `ArrayLayout` of the preceeding all= ocation. + let ptr =3D unsafe { + A::realloc( + Some(self.ptr.cast()), + layout.into(), + self.layout.into(), + flags, + )? + }; + + // INVARIANT: + // - `layout` is some `ArrayLayout::`, + // - `ptr` has been created by `A::realloc` from `layout`. + self.ptr =3D ptr.cast(); + self.layout =3D layout; + + Ok(()) + } +} + +impl Vec { + /// Extend the vector by `n` clones of `value`. + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Res= ult<(), AllocError> { + if n =3D=3D 0 { + return Ok(()); + } + + self.reserve(n, flags)?; + + let spare =3D self.spare_capacity_mut(); + + for item in spare.iter_mut().take(n - 1) { + item.write(value.clone()); + } + + // We can write the last element directly without cloning needless= ly. + spare[n - 1].write(value); + + // SAFETY: + // - `self.len() + n < self.capacity()` due to the call to reserve= above, + // - the loop and the line above initialized the next `n` elements. + unsafe { self.set_len(self.len() + n) }; + + Ok(()) + } + + /// Pushes clones of the elements of slice into the [`Vec`] instance. + /// + /// # Examples + /// + /// ``` + /// let mut v =3D KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 20, 30, 40]); + /// + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); + /// # Ok::<(), Error>(()) + /// ``` + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Resu= lt<(), AllocError> { + self.reserve(other.len(), flags)?; + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), oth= er) { + slot.write(item.clone()); + } + + // SAFETY: + // - `other.len()` spare entries have just been initialized, so it= is safe to increase + // the length by the same number. + // - `self.len() + other.len() <=3D self.capacity()` is guaranteed= by the preceding `reserve` + // call. + unsafe { self.set_len(self.len() + other.len()) }; + Ok(()) + } + + /// Create a new `Vec and extend it by `n` clones of `value`. + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result { + let mut v =3D Self::with_capacity(n, flags)?; + + v.extend_with(n, value, flags)?; + + Ok(v) + } +} + +impl Drop for Vec +where + A: Allocator, +{ + fn drop(&mut self) { + // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type= invariant. + unsafe { + ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( + self.as_mut_ptr(), + self.len, + )) + }; + + // SAFETY: + // - `self.ptr` was previously allocated with `A`. + // - `self.layout` matches the `ArrayLayout` of the preceeding all= ocation. + unsafe { A::free(self.ptr.cast(), self.layout.into()) }; + } +} + +impl From> for Vec +where + A: Allocator, +{ + fn from(b: Box<[T; N], A>) -> Vec { + let len =3D b.len(); + let ptr =3D Box::into_raw(b); + + // SAFETY: + // - `b` has been allocated with `A`, + // - `ptr` fulfills the alignment requirements for `T`, + // - `ptr` points to memory with at least a size of `size_of::(= ) * len`, + // - all elements within `b` are initialized values of `T`, + // - `len` does not exceed `isize::MAX`. + unsafe { Vec::from_raw_parts(ptr as _, len, len) } + } +} + +impl Default for KVec { + #[inline] + fn default() -> Self { + Self::new() + } +} + +impl fmt::Debug for Vec { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl Deref for Vec +where + A: Allocator, +{ + type Target =3D [T]; + + #[inline] + fn deref(&self) -> &[T] { + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to cont= ain `self.len` + // initialized elements of type `T`. + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } + } +} + +impl DerefMut for Vec +where + A: Allocator, +{ + #[inline] + fn deref_mut(&mut self) -> &mut [T] { + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to cont= ain `self.len` + // initialized elements of type `T`. + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } + } +} + +impl Eq for Vec where A: Allocator {} + +impl, A> Index for Vec +where + A: Allocator, +{ + type Output =3D I::Output; + + #[inline] + fn index(&self, index: I) -> &Self::Output { + Index::index(&**self, index) + } +} + +impl, A> IndexMut for Vec +where + A: Allocator, +{ + #[inline] + fn index_mut(&mut self, index: I) -> &mut Self::Output { + IndexMut::index_mut(&mut **self, index) + } +} + +macro_rules! impl_slice_eq { + ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) =3D> { + $( + impl PartialEq<$rhs> for $lhs + where + T: PartialEq, + { + #[inline] + fn eq(&self, other: &$rhs) -> bool { self[..] =3D=3D other= [..] } + } + )* + } +} + +impl_slice_eq! { + [A1: Allocator, A2: Allocator] Vec, Vec, + [A: Allocator] Vec, &[U], + [A: Allocator] Vec, &mut [U], + [A: Allocator] &[T], Vec, + [A: Allocator] &mut [T], Vec, + [A: Allocator] Vec, [U], + [A: Allocator] [T], Vec, + [A: Allocator, const N: usize] Vec, [U; N], + [A: Allocator, const N: usize] Vec, &[U; N], +} diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs index c9fb478f03b2..01f40729810b 100644 --- a/rust/kernel/lib.rs +++ b/rust/kernel/lib.rs @@ -17,6 +17,7 @@ #![feature(dispatch_from_dyn)] #![feature(lint_reasons)] #![feature(unsize)] +#![feature(inline_const)] =20 // Ensure conditional compilation based on the kernel configuration works; // otherwise we may silently break things like initcall handling. diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs index d5f2fe42d093..80223cdaa485 100644 --- a/rust/kernel/prelude.rs +++ b/rust/kernel/prelude.rs @@ -14,7 +14,7 @@ #[doc(no_inline)] pub use core::pin::Pin; =20 -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec,= KVec, VBox, VVec}; =20 #[doc(no_inline)] pub use alloc::vec::Vec; --=20 2.46.1