From nobody Mon Feb 9 10:33:22 2026 Delivered-To: importer@patchew.org Authentication-Results: mx.zohomail.com; spf=pass (zohomail.com: domain of gnu.org designates 209.51.188.17 as permitted sender) smtp.mailfrom=qemu-devel-bounces+importer=patchew.org@nongnu.org; dmarc=pass(p=none dis=none) header.from=nongnu.org ARC-Seal: i=1; a=rsa-sha256; t=1682599489; cv=none; d=zohomail.com; s=zohoarc; b=NiJIk+fJKvVg5tUeT/AKjLEVLUNZr6Ud3OxD8eN8HX2SmE/pqVWU5jxb1Xx7CEBHBGHh3vuDYJJ26E1yWI+xBvE07sBknckwFseB+PphrJro1JfYfqObI+Wi4klU09tHxsk0G0PLCPeJFLM8e3J7uaswGMY5QmZ05ZvD0w3oXYI= ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=zohomail.com; s=zohoarc; t=1682599489; h=Content-Type:Content-Transfer-Encoding:Cc:Date:From:In-Reply-To:List-Subscribe:List-Post:List-Id:List-Archive:List-Help:List-Unsubscribe:MIME-Version:Message-ID:Reply-To:References:Sender:Subject:To; bh=EEa9G+DC/6tdrWVpeETjuIcvDkn8rApAzUrcQfR9gJQ=; b=n9F+UhHnnvN5Sa4DCx80/mBetFfEaT6ZkXdN+y5efw0mRiQ2F3EY0/jGC6WD1C4o5KnHQGYc3ersSnamlAztDIZD2mqTNsOwCY97Vy9ef6uX6apGH4budiFRNIM4+ZFe+KPsh1KSdqEFDE8z6fy0R0PwiBEnniB0CppByNwW2Q8= ARC-Authentication-Results: i=1; mx.zohomail.com; spf=pass (zohomail.com: domain of gnu.org designates 209.51.188.17 as permitted sender) smtp.mailfrom=qemu-devel-bounces+importer=patchew.org@nongnu.org; dmarc=pass header.from= (p=none dis=none) Return-Path: Received: from lists.gnu.org (lists.gnu.org [209.51.188.17]) by mx.zohomail.com with SMTPS id 1682599489125447.18774248155637; Thu, 27 Apr 2023 05:44:49 -0700 (PDT) Received: from localhost ([::1] helo=lists1p.gnu.org) by lists.gnu.org with esmtp (Exim 4.90_1) (envelope-from ) id 1ps0z3-0007OC-Ii; Thu, 27 Apr 2023 08:44:25 -0400 Received: from eggs.gnu.org ([2001:470:142:3::10]) by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1ps0yy-0007Kp-Rv for qemu-devel@nongnu.org; Thu, 27 Apr 2023 08:44:20 -0400 Received: from frasgout.his.huawei.com ([185.176.79.56]) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1ps0yt-0001tb-GB for qemu-devel@nongnu.org; Thu, 27 Apr 2023 08:44:20 -0400 Received: from lhrpeml500004.china.huawei.com (unknown [172.18.147.226]) by frasgout.his.huawei.com (SkyGuard) with ESMTP id 4Q6b245w0Yz6J8CF; Thu, 27 Apr 2023 20:41:00 +0800 (CST) Received: from DESKTOP-0LHM7NF.huawei.com (10.199.58.101) by lhrpeml500004.china.huawei.com (7.191.163.9) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256) id 15.1.2507.23; Thu, 27 Apr 2023 13:44:08 +0100 To: CC: , , , , , Andrei Gudkov Subject: [PATCH v2 4/4] migration/calc-dirty-rate: tool to predict migration time Date: Thu, 27 Apr 2023 15:43:00 +0300 Message-ID: <644a9e7f2bff9d36716a3722c729dc88ea40a35a.1682598010.git.gudkov.andrei@huawei.com> X-Mailer: git-send-email 2.30.2 In-Reply-To: References: MIME-Version: 1.0 Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: quoted-printable X-Originating-IP: [10.199.58.101] X-ClientProxiedBy: dggems703-chm.china.huawei.com (10.3.19.180) To lhrpeml500004.china.huawei.com (7.191.163.9) X-CFilter-Loop: Reflected Received-SPF: pass (zohomail.com: domain of gnu.org designates 209.51.188.17 as permitted sender) client-ip=209.51.188.17; envelope-from=qemu-devel-bounces+importer=patchew.org@nongnu.org; helo=lists.gnu.org; Received-SPF: pass client-ip=185.176.79.56; envelope-from=gudkov.andrei@huawei.com; helo=frasgout.his.huawei.com X-Spam_score_int: -41 X-Spam_score: -4.2 X-Spam_bar: ---- X-Spam_report: (-4.2 / 5.0 requ) BAYES_00=-1.9, RCVD_IN_DNSWL_MED=-2.3, RCVD_IN_MSPIKE_H2=-0.001, SPF_HELO_NONE=0.001, SPF_PASS=-0.001, T_SCC_BODY_TEXT_LINE=-0.01 autolearn=ham autolearn_force=no X-Spam_action: no action X-BeenThere: qemu-devel@nongnu.org X-Mailman-Version: 2.1.29 Precedence: list List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Reply-to: Andrei Gudkov From: Andrei Gudkov via Errors-To: qemu-devel-bounces+importer=patchew.org@nongnu.org Sender: qemu-devel-bounces+importer=patchew.org@nongnu.org X-ZM-MESSAGEID: 1682599490027100005 Signed-off-by: Andrei Gudkov --- MAINTAINERS | 1 + scripts/predict_migration.py | 283 +++++++++++++++++++++++++++++++++++ 2 files changed, 284 insertions(+) create mode 100644 scripts/predict_migration.py diff --git a/MAINTAINERS b/MAINTAINERS index fc225e66df..0c578446cf 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -3167,6 +3167,7 @@ F: docs/devel/migration.rst F: qapi/migration.json F: tests/migration/ F: util/userfaultfd.c +F: scripts/predict_migration.py =20 D-Bus M: Marc-Andr=C3=A9 Lureau diff --git a/scripts/predict_migration.py b/scripts/predict_migration.py new file mode 100644 index 0000000000..c92a97585f --- /dev/null +++ b/scripts/predict_migration.py @@ -0,0 +1,283 @@ +#!/usr/bin/env python3 +# +# Predicts time required to migrate VM under given max downtime constraint. +# +# Copyright (c) 2023 HUAWEI TECHNOLOGIES CO.,LTD. +# +# Authors: +# Andrei Gudkov +# +# This work is licensed under the terms of the GNU GPL, version 2 or +# later. See the COPYING file in the top-level directory. + + +# Usage: +# +# Step 1. Collect dirty page statistics from live VM: +# $ scripts/predict_migration.py calc-dirty-rate >dirt= y.json +# <...takes 1 minute by default...> +# +# Step 2. Run predictor against collected data: +# $ scripts/predict_migration.py predict < dirty.json +# Downtime> | 125ms | 250ms | 500ms | 1000ms | 5000ms | un= lim | +# ------------------------------------------------------------------------= ----- +# 100 Mbps | - | - | - | - | - | 16m= 45s | +# 1 Gbps | - | - | - | - | - | 1m= 39s | +# 2 Gbps | - | - | - | - | 1m55s | = 50s | +# 2.5 Gbps | - | - | - | - | 1m12s | = 40s | +# 5 Gbps | - | - | - | 29s | 25s | = 20s | +# 10 Gbps | 13s | 13s | 12s | 12s | 12s | = 10s | +# 25 Gbps | 5s | 5s | 5s | 5s | 4s | = 4s | +# 40 Gbps | 3s | 3s | 3s | 3s | 3s | = 3s | +# +# The latter prints table that lists estimated time it will take to migrat= e VM. +# This time depends on the network bandwidth and max allowed downtime. +# Dash indicates that migration does not converge. +# Prediction takes care only about migrating RAM and only in pre-copy mode. +# Other features, such as compression or local disk migration, are not sup= ported + + +import sys +import os +import math +import json +from dataclasses import dataclass +import asyncio +import argparse + +sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'python')) +from qemu.qmp import QMPClient + +async def calc_dirty_rate(host, port, calc_time, sample_pages): + client =3D QMPClient() + try: + await client.connect((host, port)) + args =3D { + 'calc-time': calc_time, + 'sample-pages': sample_pages + } + await client.execute('calc-dirty-rate', args) + await asyncio.sleep(calc_time) + while True: + data =3D await client.execute('query-dirty-rate') + if data['status'] =3D=3D 'measuring': + await asyncio.sleep(0.5) + elif data['status'] =3D=3D 'measured': + return data + else: + raise ValueError(data['status']) + finally: + await client.disconnect() + + +class MemoryModel: + """ + Models RAM state during pre-copy migration using calc-dirty-rate resul= ts. + Its primary function is to estimate how many pages will be dirtied + after given time starting from "clean" state. + This function is non-linear and saturates at some point. + """ + + @dataclass + class Point: + period_millis:float + dirty_pages:float + + def __init__(self, data): + """ + :param data: dictionary returned by calc-dirty-rate + """ + self.__points =3D self.__make_points(data) + self.__page_size =3D data['page-size'] + self.__num_total_pages =3D data['n-total-pages'] + self.__num_zero_pages =3D data['n-zero-pages'] / \ + (data['n-sampled-pages'] / data['n-total-pages']) + + def __make_points(self, data): + points =3D list() + + # Add observed points + sample_ratio =3D data['n-sampled-pages'] / data['n-total-pages'] + for millis,dirty_pages in zip(data['periods'], data['n-dirty-pages= ']): + millis =3D float(millis) + dirty_pages =3D dirty_pages / sample_ratio + points.append(MemoryModel.Point(millis, dirty_pages)) + + # Extrapolate function to the left. + # Assuming that the function is convex, the worst case is achieved + # when dirty page count immediately jumps to some value at zero ti= me + # (infinite slope), and next keeps the same slope as in the region + # between the first two observed points: points[0]..points[1] + slope, offset =3D self.__fit_line(points[0], points[1]) + points.insert(0, MemoryModel.Point(0.0, max(offset, 0.0))) + + # Extrapolate function to the right. + # The worst case is achieved when the function has the same slope + # as in the last observed region. + slope, offset =3D self.__fit_line(points[-2], points[-1]) + max_dirty_pages =3D \ + data['n-total-pages'] - (data['n-zero-pages'] / sample_rat= io) + if slope > 0.0: + saturation_millis =3D (max_dirty_pages - offset) / slope + points.append(MemoryModel.Point(saturation_millis, max_dirty_p= ages)) + points.append(MemoryModel.Point(math.inf, max_dirty_pages)) + + return points + + def __fit_line(self, lhs:Point, rhs:Point): + slope =3D (rhs.dirty_pages - lhs.dirty_pages) / \ + (rhs.period_millis - lhs.period_millis) + offset =3D lhs.dirty_pages - slope * lhs.period_millis + return slope, offset + + def page_size(self): + """ + Return page size in bytes + """ + return self.__page_size + + def num_total_pages(self): + return self.__num_total_pages + + def num_zero_pages(self): + """ + Estimated total number of zero pages. Assumed to be constant. + """ + return self.__num_zero_pages + + def num_dirty_pages(self, millis): + """ + Estimate number of dirty pages after given time starting from "cle= an" + state. The estimation is based on piece-wise linear interpolation. + """ + for i in range(len(self.__points)): + if self.__points[i].period_millis =3D=3D millis: + return self.__points[i].dirty_pages + elif self.__points[i].period_millis > millis: + slope, offset =3D self.__fit_line(self.__points[i-1], + self.__points[i]) + return offset + slope * millis + raise RuntimeError("unreachable") + + +def predict_migration_time(model, bandwidth, downtime, deadline=3D3600*100= 0): + """ + Predict how much time it will take to migrate VM under under given + deadline constraint. + + :param model: `MemoryModel` object for a given VM + :param bandwidth: Bandwidth available for migration [bytes/s] + :param downtime: Max allowed downtime [milliseconds] + :param deadline: Max total time to migrate VM before timeout [millisec= onds] + :return: Predicted migration time [milliseconds] or `None` + if migration process doesn't converge before given deadline + """ + + left_zero_pages =3D model.num_zero_pages() + left_normal_pages =3D model.num_total_pages() - model.num_zero_pages() + header_size =3D 8 + + total_millis =3D 0.0 + while True: + iter_bytes =3D 0.0 + iter_bytes +=3D left_normal_pages * (model.page_size() + header_si= ze) + iter_bytes +=3D left_zero_pages * header_size + + iter_millis =3D iter_bytes * 1000.0 / bandwidth + + total_millis +=3D iter_millis + + if iter_millis <=3D downtime: + return int(math.ceil(total_millis)) + elif total_millis > deadline: + return None + else: + left_zero_pages =3D 0 + left_normal_pages =3D model.num_dirty_pages(iter_millis) + + +def run_predict_cmd(model): + @dataclass + class ValStr: + value:object + string:str + + def gbps(value): + return ValStr(value*1024*1024*1024/8, f'{value} Gbps') + + def mbps(value): + return ValStr(value*1024*1024/8, f'{value} Mbps') + + def dt(millis): + if millis is not None: + return ValStr(millis, f'{millis}ms') + else: + return ValStr(math.inf, 'unlim') + + def eta(millis): + if millis is not None: + seconds =3D int(math.ceil(millis/1000.0)) + minutes, seconds =3D divmod(seconds, 60) + s =3D '' + if minutes > 0: + s +=3D f'{minutes}m' + if len(s) > 0: + s +=3D f'{seconds:02d}s' + else: + s +=3D f'{seconds}s' + else: + s =3D '-' + return ValStr(millis, s) + + + bandwidths =3D [mbps(100), gbps(1), gbps(2), gbps(2.5), gbps(5), gbps(= 10), + gbps(25), gbps(40)] + downtimes =3D [dt(125), dt(250), dt(500), dt(1000), dt(5000), dt(None)] + + out =3D '' + out +=3D 'Downtime> |' + for downtime in downtimes: + out +=3D f' {downtime.string:>7} |' + print(out) + + print('-'*len(out)) + + for bandwidth in bandwidths: + print(f'{bandwidth.string:>9} | ', '', end=3D'') + for downtime in downtimes: + millis =3D predict_migration_time(model, + bandwidth.value, + downtime.value) + print(f'{eta(millis).string:>7} | ', '', end=3D'') + print() + +def main(): + parser =3D argparse.ArgumentParser() + subparsers =3D parser.add_subparsers(dest=3D'command', required=3DTrue) + + parser_cdr =3D subparsers.add_parser('calc-dirty-rate', + help=3D'Collect and print dirty page statistics from live VM') + parser_cdr.add_argument('--calc-time', type=3Dint, default=3D60, + help=3D'Calculation time in seconds') + parser_cdr.add_argument('--sample-pages', type=3Dint, default=3D512, + help=3D'Number of sampled pages per one gigabyte of RAM') + parser_cdr.add_argument('host', metavar=3D'host', type=3Dstr, help=3D'= QMP host') + parser_cdr.add_argument('port', metavar=3D'port', type=3Dint, help=3D'= QMP port') + + subparsers.add_parser('predict', help=3D'Predict migration time') + + args =3D parser.parse_args() + + if args.command =3D=3D 'calc-dirty-rate': + data =3D asyncio.run(calc_dirty_rate(host=3Dargs.host, + port=3Dargs.port, + calc_time=3Dargs.calc_time, + sample_pages=3Dargs.sample_page= s)) + print(json.dumps(data)) + elif args.command =3D=3D 'predict': + data =3D json.load(sys.stdin) + model =3D MemoryModel(data) + run_predict_cmd(model) + +if __name__ =3D=3D '__main__': + main() --=20 2.30.2